IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v300y2022i3p992-1004.html
   My bibliography  Save this article

A cumulative unmanned aerial vehicle routing problem approach for humanitarian coverage path planning

Author

Listed:
  • Kyriakakis, Nikolaos A.
  • Marinaki, Magdalene
  • Matsatsinis, Nikolaos
  • Marinakis, Yannis

Abstract

This paper presents a Cumulative Unmanned Aerial Vehicle Routing Problem (CUAVRP) approach to optimize Humanitarian Coverage Path Planning (HCPP). Coverage path planning consists of finding the route which covers every point of a certain area of interest. This paper considers a Search & Rescue mission, using a homogeneous fleet of Unmanned Aerial Vehicles (UAVs). In this scenario, the objective is to minimize the sum of arrival times at all points of the area of interest, thus, completing the search with minimum latency. The HCPP problem is transformed into a Vehicle Routing Problem by using an approximate cellular decomposition technique to discretize the area into a grid, where the rectangles represent the UAV sensor’s field of view. The center points of the formed rectangles, become the nodes used for a UAV routing problem. This approach uses the objective of minimizing the sum of arrival times at customers, found in the Cumulative Capacitated Vehicle Routing Problem (CCVRP), adjusted for the Search & Rescue Coverage Path Planning using UAVs. The Min-max objective is also implemented and tested. Three versions of a Parallel Weighted Greedy Randomized Adaptive Search Procedure - Variable Neighborhood Decent (GRASP-VND) algorithm is implemented to solve the Cumulative UAV Routing Problem for Humanitarian Coverage Path Planning.

Suggested Citation

  • Kyriakakis, Nikolaos A. & Marinaki, Magdalene & Matsatsinis, Nikolaos & Marinakis, Yannis, 2022. "A cumulative unmanned aerial vehicle routing problem approach for humanitarian coverage path planning," European Journal of Operational Research, Elsevier, vol. 300(3), pages 992-1004.
  • Handle: RePEc:eee:ejores:v:300:y:2022:i:3:p:992-1004
    DOI: 10.1016/j.ejor.2021.09.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721007670
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.09.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Evers, Lanah & Barros, Ana Isabel & Monsuur, Herman & Wagelmans, Albert, 2014. "Online stochastic UAV mission planning with time windows and time-sensitive targets," European Journal of Operational Research, Elsevier, vol. 238(1), pages 348-362.
    2. Lysgaard, Jens & Wøhlk, Sanne, 2014. "A branch-and-cut-and-price algorithm for the cumulative capacitated vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 236(3), pages 800-810.
    3. Renata M. Aiex & Mauricio G. C. Resende & Panos M. Pardalos & Gerardo Toraldo, 2005. "GRASP with Path Relinking for Three-Index Assignment," INFORMS Journal on Computing, INFORMS, vol. 17(2), pages 224-247, May.
    4. Li, Hongqi & Chen, Jun & Wang, Feilong & Bai, Ming, 2021. "Ground-vehicle and unmanned-aerial-vehicle routing problems from two-echelon scheme perspective: A review," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1078-1095.
    5. Manuel Laguna & Rafael Marti, 1999. "GRASP and Path Relinking for 2-Layer Straight Line Crossing Minimization," INFORMS Journal on Computing, INFORMS, vol. 11(1), pages 44-52, February.
    6. Sze, Jeeu Fong & Salhi, Said & Wassan, Niaz, 2017. "The cumulative capacitated vehicle routing problem with min-sum and min-max objectives: An effective hybridisation of adaptive variable neighbourhood search and large neighbourhood search," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 162-184.
    7. Yannis Marinakis & Athanasios Migdalas & Panos M. Pardalos, 2005. "A Hybrid Genetic—GRASP Algorithm Using Lagrangean Relaxation for the Traveling Salesman Problem," Journal of Combinatorial Optimization, Springer, vol. 10(4), pages 311-326, December.
    8. Ann Melissa Campbell & Dieter Vandenbussche & William Hermann, 2008. "Routing for Relief Efforts," Transportation Science, INFORMS, vol. 42(2), pages 127-145, May.
    9. Alvarez-Valdes, R. & Crespo, E. & Tamarit, J.M. & Villa, F., 2008. "GRASP and path relinking for project scheduling under partially renewable resources," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1153-1170, September.
    10. Babel, Luitpold, 2017. "Curvature-constrained traveling salesman tours for aerial surveillance in scenarios with obstacles," European Journal of Operational Research, Elsevier, vol. 262(1), pages 335-346.
    11. Armentano, Vinicius Amaral & de Franca Filho, Moacir Felizardo, 2007. "Minimizing total tardiness in parallel machine scheduling with setup times: An adaptive memory-based GRASP approach," European Journal of Operational Research, Elsevier, vol. 183(1), pages 100-114, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dukkanci, Okan & Koberstein, Achim & Kara, Bahar Y., 2023. "Drones for relief logistics under uncertainty after an earthquake," European Journal of Operational Research, Elsevier, vol. 310(1), pages 117-132.
    2. Fang, Chao & Han, Zonglei & Wang, Wei & Zio, Enrico, 2023. "Routing UAVs in landslides Monitoring: A neural network heuristic for team orienteering with mandatory visits," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caio Marinho Damião & João Marcos Pereira Silva & Eduardo Uchoa, 2023. "A branch-cut-and-price algorithm for the cumulative capacitated vehicle routing problem," 4OR, Springer, vol. 21(1), pages 47-71, March.
    2. Rivera, Juan Carlos & Murat Afsar, H. & Prins, Christian, 2016. "Mathematical formulations and exact algorithm for the multitrip cumulative capacitated single-vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 249(1), pages 93-104.
    3. Timo Gschwind & Stefan Irnich & Christian Tilk & Simon Emde, 2020. "Branch-cut-and-price for scheduling deliveries with time windows in a direct shipping network," Journal of Scheduling, Springer, vol. 23(3), pages 363-377, June.
    4. Dezhi Zhang & Xin Wang & Shuangyan Li & Nan Ni & Zhuo Zhang, 2018. "Joint optimization of green vehicle scheduling and routing problem with time-varying speeds," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-20, February.
    5. Ajam, Meraj & Akbari, Vahid & Salman, F. Sibel, 2022. "Routing multiple work teams to minimize latency in post-disaster road network restoration," European Journal of Operational Research, Elsevier, vol. 300(1), pages 237-254.
    6. F. Rodriguez & C. Blum & C. García-Martínez & M. Lozano, 2012. "GRASP with path-relinking for the non-identical parallel machine scheduling problem with minimising total weighted completion times," Annals of Operations Research, Springer, vol. 201(1), pages 383-401, December.
    7. David A. Flores-Garza & M. Angélica Salazar-Aguilar & Sandra Ulrich Ngueveu & Gilbert Laporte, 2017. "The multi-vehicle cumulative covering tour problem," Annals of Operations Research, Springer, vol. 258(2), pages 761-780, November.
    8. Azadian, Farshid & Murat, Alper & Chinnam, Ratna Babu, 2015. "Integrated production and logistics planning: Contract manufacturing and choice of air/surface transportation," European Journal of Operational Research, Elsevier, vol. 247(1), pages 113-123.
    9. Sze, Jeeu Fong & Salhi, Said & Wassan, Niaz, 2017. "The cumulative capacitated vehicle routing problem with min-sum and min-max objectives: An effective hybridisation of adaptive variable neighbourhood search and large neighbourhood search," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 162-184.
    10. Ling Liu & Wenli Li & Kunpeng Li & Xuxia Zou, 2020. "A coordinated production and transportation scheduling problem with minimum sum of order delivery times," Journal of Heuristics, Springer, vol. 26(1), pages 33-58, February.
    11. Peng, Xiaoshuai & Zhang, Lele & Thompson, Russell G. & Wang, Kangzhou, 2023. "A three-phase heuristic for last-mile delivery with spatial-temporal consolidation and delivery options," International Journal of Production Economics, Elsevier, vol. 266(C).
    12. Averbakh, Igor, 2010. "Nash equilibria in competitive project scheduling," European Journal of Operational Research, Elsevier, vol. 205(3), pages 552-556, September.
    13. Goodson, Justin C. & Ohlmann, Jeffrey W. & Thomas, Barrett W., 2012. "Cyclic-order neighborhoods with application to the vehicle routing problem with stochastic demand," European Journal of Operational Research, Elsevier, vol. 217(2), pages 312-323.
    14. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    15. Karsu, Özlem & Morton, Alec, 2015. "Inequity averse optimization in operational research," European Journal of Operational Research, Elsevier, vol. 245(2), pages 343-359.
    16. Fatma-Zohra Baatout & Mhand Hifi, 2023. "A two-phase hybrid evolutionary algorithm for solving the bi-objective scheduling multiprocessor tasks on two dedicated processors," Journal of Heuristics, Springer, vol. 29(2), pages 229-267, June.
    17. Changshi Liu & Gang Kou & Yi Peng & Fawaz E. Alsaadi, 2019. "Location-Routing Problem for Relief Distribution in the Early Post-Earthquake Stage from the Perspective of Fairness," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    18. Chen, Xinwei & Wang, Tong & Thomas, Barrett W. & Ulmer, Marlin W., 2023. "Same-day delivery with fair customer service," European Journal of Operational Research, Elsevier, vol. 308(2), pages 738-751.
    19. Silva, Marcos Melo & Subramanian, Anand & Vidal, Thibaut & Ochi, Luiz Satoru, 2012. "A simple and effective metaheuristic for the Minimum Latency Problem," European Journal of Operational Research, Elsevier, vol. 221(3), pages 513-520.
    20. Yuhe Shi & Zhenggang He, 2018. "Decision Analysis of Disturbance Management in the Process of Medical Supplies Transportation after Natural Disasters," IJERPH, MDPI, vol. 15(8), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:300:y:2022:i:3:p:992-1004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.