IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v274y2019i2p710-729.html
   My bibliography  Save this article

Heuristics for the Constrained Incremental Graph Drawing Problem

Author

Listed:
  • Napoletano, Antonio
  • Martínez-Gavara, Anna
  • Festa, Paola
  • Pastore, Tommaso
  • Martí, Rafael

Abstract

Visualization of information is a relevant topic in Computer Science, where graphs have become a standard representation model, and graph drawing is now a well-established area. Within this context, edge crossing minimization is a widely studied problem given its importance in obtaining readable representations of graphs. In this paper, we focus on the so-called incremental graph drawing problem, in which we try to preserve the user’s mental map when obtaining successive drawings of the same graph. In particular, we minimize the number of edge crossings while satisfying some constraints required to preserve the position of vertices with respect to previous drawings. We propose heuristic methods to obtain high-quality solutions to this optimization problem in the short computational times required for graph drawing applications. We also propose a mathematical programming formulation and obtain the optimal solution for small and medium instances. Our extensive experimentation shows the merit of our proposal with respect to both optimal solutions obtained with CPLEX and heuristic solutions obtained with LocalSolver, a well-known black-box solver in combinatorial optimization.

Suggested Citation

  • Napoletano, Antonio & Martínez-Gavara, Anna & Festa, Paola & Pastore, Tommaso & Martí, Rafael, 2019. "Heuristics for the Constrained Incremental Graph Drawing Problem," European Journal of Operational Research, Elsevier, vol. 274(2), pages 710-729.
  • Handle: RePEc:eee:ejores:v:274:y:2019:i:2:p:710-729
    DOI: 10.1016/j.ejor.2018.10.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718308701
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.10.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manuel Laguna & Rafael Marti, 1999. "GRASP and Path Relinking for 2-Layer Straight Line Crossing Minimization," INFORMS Journal on Computing, INFORMS, vol. 11(1), pages 44-52, February.
    2. Anna Martínez-Gavara & Vicente Campos & Micael Gallego & Manuel Laguna & Rafael Martí, 2015. "Tabu search and GRASP for the capacitated clustering problem," Computational Optimization and Applications, Springer, vol. 62(2), pages 589-607, November.
    3. Jesús Sánchez-Oro & Anna Martínez-Gavara & Manuel Laguna & Rafael Martí & Abraham Duarte, 2017. "Variable neighborhood scatter search for the incremental graph drawing problem," Computational Optimization and Applications, Springer, vol. 68(3), pages 775-797, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Palubeckis, Gintaras & Tomkevičius, Arūnas & Ostreika, Armantas, 2019. "Hybridizing simulated annealing with variable neighborhood search for bipartite graph crossing minimization," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 84-101.
    2. Fatma-Zohra Baatout & Mhand Hifi, 2023. "A two-phase hybrid evolutionary algorithm for solving the bi-objective scheduling multiprocessor tasks on two dedicated processors," Journal of Heuristics, Springer, vol. 29(2), pages 229-267, June.
    3. Rafael Martí & Abraham Duarte & Manuel Laguna, 2009. "Advanced Scatter Search for the Max-Cut Problem," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 26-38, February.
    4. Nathan Sudermann‐Merx & Steffen Rebennack & Christian Timpe, 2021. "Crossing Minimal Edge‐Constrained Layout Planning using Benders Decomposition," Production and Operations Management, Production and Operations Management Society, vol. 30(10), pages 3429-3447, October.
    5. Martí, Rafael & Martínez-Gavara, Anna & Pérez-Peló, Sergio & Sánchez-Oro, Jesús, 2022. "A review on discrete diversity and dispersion maximization from an OR perspective," European Journal of Operational Research, Elsevier, vol. 299(3), pages 795-813.
    6. Fred Glover & Vicente Campos & Rafael Martí, 2021. "Tabu search tutorial. A Graph Drawing Application," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 319-350, July.
    7. Jack Brimberg & Nenad Mladenović & Raca Todosijević & Dragan Urošević, 2019. "Solving the capacitated clustering problem with variable neighborhood search," Annals of Operations Research, Springer, vol. 272(1), pages 289-321, January.
    8. Zhou, Qing & Benlic, Una & Wu, Qinghua & Hao, Jin-Kao, 2019. "Heuristic search to the capacitated clustering problem," European Journal of Operational Research, Elsevier, vol. 273(2), pages 464-487.
    9. Bierwirth, C. & Kuhpfahl, J., 2017. "Extended GRASP for the job shop scheduling problem with total weighted tardiness objective," European Journal of Operational Research, Elsevier, vol. 261(3), pages 835-848.
    10. Kyriakakis, Nikolaos A. & Marinaki, Magdalene & Matsatsinis, Nikolaos & Marinakis, Yannis, 2022. "A cumulative unmanned aerial vehicle routing problem approach for humanitarian coverage path planning," European Journal of Operational Research, Elsevier, vol. 300(3), pages 992-1004.
    11. Ramón Alvarez-Valdes & Rafael Martí & Jose M. Tamarit & Antonio Parajón, 2007. "GRASP and Path Relinking for the Two-Dimensional Two-Stage Cutting-Stock Problem," INFORMS Journal on Computing, INFORMS, vol. 19(2), pages 261-272, May.
    12. Mauricio Resende & Renato Werneck, 2007. "A fast swap-based local search procedure for location problems," Annals of Operations Research, Springer, vol. 150(1), pages 205-230, March.
    13. Antonio R. Uguina & Juan F. Gomez & Javier Panadero & Anna Martínez-Gavara & Angel A. Juan, 2024. "A Learnheuristic Algorithm Based on Thompson Sampling for the Heterogeneous and Dynamic Team Orienteering Problem," Mathematics, MDPI, vol. 12(11), pages 1-19, June.
    14. Fred Glover & Vicente Campos & Rafael Martí, 2021. "Rejoinder on: Tabu search tutorial. A Graph Drawing Application," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 363-371, July.
    15. Markus Frey & Ferdinand Kiermaier & Rainer Kolisch, 2017. "Optimizing Inbound Baggage Handling at Airports," Transportation Science, INFORMS, vol. 51(4), pages 1210-1225, November.
    16. Zheng Wang & Wei Xu & Xiangpei Hu & Yong Wang, 2022. "Inventory allocation to robotic mobile-rack and picker-to-part warehouses at minimum order-splitting and replenishment costs," Annals of Operations Research, Springer, vol. 316(1), pages 467-491, September.
    17. Michel Gendreau & Jean-Yves Potvin, 2005. "Metaheuristics in Combinatorial Optimization," Annals of Operations Research, Springer, vol. 140(1), pages 189-213, November.
    18. F. Rodriguez & C. Blum & C. García-Martínez & M. Lozano, 2012. "GRASP with path-relinking for the non-identical parallel machine scheduling problem with minimising total weighted completion times," Annals of Operations Research, Springer, vol. 201(1), pages 383-401, December.
    19. Qinghua Wu & Yang Wang & Fred Glover, 2020. "Advanced Tabu Search Algorithms for Bipartite Boolean Quadratic Programs Guided by Strategic Oscillation and Path Relinking," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 74-89, January.
    20. Maria Albareda-Sambola & Elena Fernández & Francisco Saldanha-da-Gama, 2017. "Heuristic Solutions to the Facility Location Problem with General Bernoulli Demands," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 737-753, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:274:y:2019:i:2:p:710-729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.