IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v298y2022i1p213-228.html
   My bibliography  Save this article

Discrete conditional-expectation-based simulation optimization: Methodology and applications

Author

Listed:
  • Chang, Kuo-Hao
  • Cuckler, Robert
  • Lee, Song-Lin
  • Lee, Loo Hay

Abstract

Conditional value at risk (CVaR), which in essence is conditional expectation (CE), is a widely used risk measure commonly applied by financial engineers. This paper generalizes the concept of CE to the expected value of a loss function given that its value falls in between the α- and β-quantiles of the output distribution of a simulation model. We present a simulation optimization framework capable of efficiently estimating and optimizing this CE-based problem over a discrete feasible region. In order to allow our algorithm to be applicable to a wide range of problems including those of the black-box variety, we propose a gradient- and convexity assumption-free methodology known as Adaptive Particle and Hyperball Search for Conditional Expectation (APHS-CE). Besides applying the newly-developed Adaptive Particle Search to explore the whole feasible region globally, APHS-CE also dynamically and iteratively defines hyperball-based neighborhoods and exploits the most promising region locally through Latin Hyperball Sampling to speed up and facilitate the convergence to the global optimum. Convergence of the algorithm to the global optimal solution(s) is proved. Moreover, in order to enhance the algorithm efficiency, the variance reduction method of Importance Sampling in conjunction with a mechanism, called SOCBA-1, which is based on Optimal Computing Budget Allocation (OCBA) but tailored to fit the CE-based problems, are both applied. Numerical and empirical studies were conducted to evaluate the efficiency and efficacy of the proposed framework. Results show that the performance is promising and the framework is worth further investigation.

Suggested Citation

  • Chang, Kuo-Hao & Cuckler, Robert & Lee, Song-Lin & Lee, Loo Hay, 2022. "Discrete conditional-expectation-based simulation optimization: Methodology and applications," European Journal of Operational Research, Elsevier, vol. 298(1), pages 213-228.
  • Handle: RePEc:eee:ejores:v:298:y:2022:i:1:p:213-228
    DOI: 10.1016/j.ejor.2021.11.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721009437
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.11.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rojas Gonzalez, Sebastian & Jalali, Hamed & Van Nieuwenhuyse, Inneke, 2020. "A multiobjective stochastic simulation optimization algorithm," European Journal of Operational Research, Elsevier, vol. 284(1), pages 212-226.
    2. Rockafellar, R.T. & Royset, J.O., 2010. "On buffered failure probability in design and optimization of structures," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 499-510.
    3. Lamiri, Mehdi & Grimaud, Frédéric & Xie, Xiaolan, 2009. "Optimization methods for a stochastic surgery planning problem," International Journal of Production Economics, Elsevier, vol. 120(2), pages 400-410, August.
    4. Churlzu Lim & Hanif Sherali & Stan Uryasev, 2010. "Portfolio optimization by minimizing conditional value-at-risk via nondifferentiable optimization," Computational Optimization and Applications, Springer, vol. 46(3), pages 391-415, July.
    5. Helin Zhu & Joshua Hale & Enlu Zhou, 2018. "Simulation optimization of risk measures with adaptive risk levels," Journal of Global Optimization, Springer, vol. 70(4), pages 783-809, April.
    6. Chang, Kuo-Hao, 2015. "A direct search method for unconstrained quantile-based simulation optimization," European Journal of Operational Research, Elsevier, vol. 246(2), pages 487-495.
    7. Włodzimierz Ogryczak & Tomasz Śliwiński, 2011. "On solving the dual for portfolio selection by optimizing Conditional Value at Risk," Computational Optimization and Applications, Springer, vol. 50(3), pages 591-595, December.
    8. NESTEROV, Yu., 2005. "Smooth minimization of non-smooth functions," LIDAM Reprints CORE 1819, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Chang, Kuo-Hao, 2012. "Stochastic Nelder–Mead simplex method – A new globally convergent direct search method for simulation optimization," European Journal of Operational Research, Elsevier, vol. 220(3), pages 684-694.
    10. Garud Iyengar & Alfred Ma, 2013. "Fast gradient descent method for Mean-CVaR optimization," Annals of Operations Research, Springer, vol. 205(1), pages 203-212, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang, Kuo-Hao & Chen, Tzu-Li & Yang, Fu-Hao & Chang, Tzu-Yin, 2023. "Simulation optimization for stochastic casualty collection point location and resource allocation problem in a mass casualty incident," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1237-1262.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L. Jeff Hong & Zhaolin Hu & Liwei Zhang, 2014. "Conditional Value-at-Risk Approximation to Value-at-Risk Constrained Programs: A Remedy via Monte Carlo," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 385-400, May.
    2. Ken Kobayashi & Yuichi Takano & Kazuhide Nakata, 2021. "Bilevel cutting-plane algorithm for cardinality-constrained mean-CVaR portfolio optimization," Journal of Global Optimization, Springer, vol. 81(2), pages 493-528, October.
    3. Ahmadi-Javid, Amir & Fallah-Tafti, Malihe, 2019. "Portfolio optimization with entropic value-at-risk," European Journal of Operational Research, Elsevier, vol. 279(1), pages 225-241.
    4. Amir Ahmadi-Javid & Malihe Fallah-Tafti, 2017. "Portfolio Optimization with Entropic Value-at-Risk," Papers 1708.05713, arXiv.org.
    5. Daniel Espinoza & Eduardo Moreno, 2014. "A primal-dual aggregation algorithm for minimizing conditional value-at-risk in linear programs," Computational Optimization and Applications, Springer, vol. 59(3), pages 617-638, December.
    6. Jiarui Chu & Ludovic Tangpi, 2021. "Non-asymptotic estimation of risk measures using stochastic gradient Langevin dynamics," Papers 2111.12248, arXiv.org, revised Feb 2023.
    7. Chang, Kuo-Hao & Kuo, Po-Yi, 2018. "An efficient simulation optimization method for the generalized redundancy allocation problem," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1094-1101.
    8. Seixas, Mário & Barbosa, António, 2019. "Optimal Value-at-Risk Disclosure," MPRA Paper 97526, University Library of Munich, Germany.
    9. Matthew Norton & Valentyn Khokhlov & Stan Uryasev, 2021. "Calculating CVaR and bPOE for common probability distributions with application to portfolio optimization and density estimation," Annals of Operations Research, Springer, vol. 299(1), pages 1281-1315, April.
    10. Gréanne Leeftink & Erwin W. Hans, 2018. "Case mix classification and a benchmark set for surgery scheduling," Journal of Scheduling, Springer, vol. 21(1), pages 17-33, February.
    11. Masaru Ito, 2016. "New results on subgradient methods for strongly convex optimization problems with a unified analysis," Computational Optimization and Applications, Springer, vol. 65(1), pages 127-172, September.
    12. TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Discussion Papers CORE 2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    13. Dimitris Bertsimas & Nishanth Mundru, 2021. "Sparse Convex Regression," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 262-279, January.
    14. Xiaojiao Tong & Hailin Sun & Xiao Luo & Quanguo Zheng, 2018. "Distributionally robust chance constrained optimization for economic dispatch in renewable energy integrated systems," Journal of Global Optimization, Springer, vol. 70(1), pages 131-158, January.
    15. Thilini V. Mahanama & Abootaleb Shirvani & Svetlozar Rachev, 2023. "The Financial Market of Indices of Socioeconomic Wellbeing," Papers 2303.05654, arXiv.org.
    16. Massimiliano Amarante, 2016. "A representation of risk measures," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 39(1), pages 95-103, April.
    17. Gartner, Daniel & Kolisch, Rainer, 2014. "Scheduling the hospital-wide flow of elective patients," European Journal of Operational Research, Elsevier, vol. 233(3), pages 689-699.
    18. Alexandre Belloni & Victor Chernozhukov & Lie Wang, 2013. "Pivotal estimation via square-root lasso in nonparametric regression," CeMMAP working papers CWP62/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    20. Cappanera, Paola & Visintin, Filippo & Banditori, Carlo, 2014. "Comparing resource balancing criteria in master surgical scheduling: A combined optimisation-simulation approach," International Journal of Production Economics, Elsevier, vol. 158(C), pages 179-196.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:298:y:2022:i:1:p:213-228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.