IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v33y2017i4d10.1007_s10878-016-0035-7.html
   My bibliography  Save this article

Approximation of knapsack problems with conflict and forcing graphs

Author

Listed:
  • Ulrich Pferschy

    (University of Graz)

  • Joachim Schauer

    (University of Graz)

Abstract

We study the classical 0–1 knapsack problem with additional restrictions on pairs of items. A conflict constraint states that from a certain pair of items at most one item can be contained in a feasible solution. Reversing this condition, we obtain a forcing constraint stating that at least one of the two items must be included in the knapsack. A natural way for representing these constraints is the use of conflict (resp. forcing) graphs. By modifying a recent result of Lokstanov et al. (Proceedings of the 25th annual ACM-SIAM symposium on discrete algorithms, SODA, pp 570–581, 2014) we derive a fairly complicated FPTAS for the knapsack problem on weakly chordal conflict graphs. Next, we show that the techniques of modular decompositions and clique separators, widely used in the literature for solving the independent set problem on special graph classes, can be applied to the knapsack problem with conflict graphs. In particular, we can show that every positive approximation result for the atoms of prime graphs arising from such a decomposition carries over to the original graph. We point out a number of structural results from the literature which can be used to show the existence of an FPTAS for several graph classes characterized by the exclusion of certain induced subgraphs. Finally, a PTAS for the knapsack problem with H-minor free conflict graph is derived. This includes planar graphs and, more general, graphs of bounded genus. The PTAS is obtained by expanding a general result of Demaine et al. (Proceedings of 46th annual IEEE symposium on foundations of computer science, FOCS 2005, pp 637–646, 2005). The knapsack problem with forcing graphs can be transformed into a minimization knapsack problem with conflict graphs. It follows immediately that all our FPTAS results of the current and a previous paper carry over from conflict graphs to forcing graphs. In contrast, the forcing graph variant is already inapproximable on planar graphs.

Suggested Citation

  • Ulrich Pferschy & Joachim Schauer, 2017. "Approximation of knapsack problems with conflict and forcing graphs," Journal of Combinatorial Optimization, Springer, vol. 33(4), pages 1300-1323, May.
  • Handle: RePEc:spr:jcomop:v:33:y:2017:i:4:d:10.1007_s10878-016-0035-7
    DOI: 10.1007/s10878-016-0035-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-016-0035-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-016-0035-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ulrich Pferschy & Joachim Schauer, 2013. "The maximum flow problem with disjunctive constraints," Journal of Combinatorial Optimization, Springer, vol. 26(1), pages 109-119, July.
    2. Ruslan Sadykov & François Vanderbeck, 2013. "Bin Packing with Conflicts: A Generic Branch-and-Price Algorithm," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 244-255, May.
    3. Albert E. Fernandes Muritiba & Manuel Iori & Enrico Malaguti & Paolo Toth, 2010. "Algorithms for the Bin Packing Problem with Conflicts," INFORMS Journal on Computing, INFORMS, vol. 22(3), pages 401-415, August.
    4. Mhand Hifi & Nabil Otmani, 2012. "An algorithm for the disjunctively constrained knapsack problem," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 13(1), pages 22-43.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steffen Goebbels & Frank Gurski & Dominique Komander, 2022. "The knapsack problem with special neighbor constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(1), pages 1-34, February.
    2. Wei, Zequn & Hao, Jin-Kao & Ren, Jintong & Glover, Fred, 2023. "Responsive strategic oscillation for solving the disjunctively constrained knapsack problem," European Journal of Operational Research, Elsevier, vol. 309(3), pages 993-1009.
    3. Frank Gurski & Carolin Rehs, 2019. "Solutions for the knapsack problem with conflict and forcing graphs of bounded clique-width," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(3), pages 411-432, June.
    4. Frank Gurski & Carolin Rehs, 2020. "Counting and enumerating independent sets with applications to combinatorial optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(3), pages 439-463, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Bettinelli & Valentina Cacchiani & Enrico Malaguti, 2017. "A Branch-and-Bound Algorithm for the Knapsack Problem with Conflict Graph," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 457-473, August.
    2. Şuvak, Zeynep & Altınel, İ. Kuban & Aras, Necati, 2020. "Exact solution algorithms for the maximum flow problem with additional conflict constraints," European Journal of Operational Research, Elsevier, vol. 287(2), pages 410-437.
    3. Coniglio, Stefano & Furini, Fabio & San Segundo, Pablo, 2021. "A new combinatorial branch-and-bound algorithm for the Knapsack Problem with Conflicts," European Journal of Operational Research, Elsevier, vol. 289(2), pages 435-455.
    4. Daniel Kowalczyk & Roel Leus, 2017. "An exact algorithm for parallel machine scheduling with conflicts," Journal of Scheduling, Springer, vol. 20(4), pages 355-372, August.
    5. Fleszar, Krzysztof, 2022. "A MILP model and two heuristics for the Bin Packing Problem with Conflicts and Item Fragmentation," European Journal of Operational Research, Elsevier, vol. 303(1), pages 37-53.
    6. Lijun Wei & Zhixing Luo, & Roberto Baldacci & Andrew Lim, 2020. "A New Branch-and-Price-and-Cut Algorithm for One-Dimensional Bin-Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 428-443, April.
    7. Renatha Capua & Yuri Frota & Luiz Satoru Ochi & Thibaut Vidal, 2018. "A study on exponential-size neighborhoods for the bin packing problem with conflicts," Journal of Heuristics, Springer, vol. 24(4), pages 667-695, August.
    8. Mathijs Barkel & Maxence Delorme, 2023. "Arcflow Formulations and Constraint Generation Frameworks for the Two Bar Charts Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 475-494, March.
    9. Hu, Qian & Zhu, Wenbin & Qin, Hu & Lim, Andrew, 2017. "A branch-and-price algorithm for the two-dimensional vector packing problem with piecewise linear cost function," European Journal of Operational Research, Elsevier, vol. 260(1), pages 70-80.
    10. Orlando Rivera Letelier & François Clautiaux & Ruslan Sadykov, 2022. "Bin Packing Problem with Time Lags," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2249-2270, July.
    11. Saharnaz Mehrani & Carlos Cardonha & David Bergman, 2022. "Models and Algorithms for the Bin-Packing Problem with Minimum Color Fragmentation," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1070-1085, March.
    12. Timo Gschwind & Stefan Irnich, 2016. "Dual Inequalities for Stabilized Column Generation Revisited," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 175-194, February.
    13. Timo Gschwind & Stefan Irnich, 2014. "Dual Inequalities for Stabilized Column Generation Revisited," Working Papers 1407, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz, revised 23 Jul 2014.
    14. Borja Ena & Alberto Gomez & Borja Ponte & Paolo Priore & Diego Diaz, 2022. "Homogeneous grouping of non-prime steel products for online auctions: a case study," Annals of Operations Research, Springer, vol. 315(1), pages 591-621, August.
    15. Walaa H. El-Ashmawi & Ahmad Salah & Mahmoud Bekhit & Guoqing Xiao & Khalil Al Ruqeishi & Ahmed Fathalla, 2023. "An Adaptive Jellyfish Search Algorithm for Packing Items with Conflict," Mathematics, MDPI, vol. 11(14), pages 1-28, July.
    16. Pereira, Jordi, 2016. "Procedures for the bin packing problem with precedence constraints," European Journal of Operational Research, Elsevier, vol. 250(3), pages 794-806.
    17. Luciano Costa & Claudio Contardo & Guy Desaulniers & Julian Yarkony, 2022. "Stabilized Column Generation Via the Dynamic Separation of Aggregated Rows," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1141-1156, March.
    18. Stefan Schwerdfeger & Nils Boysen & Dirk Briskorn, 2018. "Just-in-time logistics for far-distant suppliers: scheduling truck departures from an intermediate cross-docking terminal," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 1-21, January.
    19. Francesco Carrabs & Raffaele Cerulli & Rosa Pentangelo & Andrea Raiconi, 2021. "Minimum spanning tree with conflicting edge pairs: a branch-and-cut approach," Annals of Operations Research, Springer, vol. 298(1), pages 65-78, March.
    20. Ekici, Ali, 2023. "A large neighborhood search algorithm and lower bounds for the variable-Sized bin packing problem with conflicts," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1007-1020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:33:y:2017:i:4:d:10.1007_s10878-016-0035-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.