IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v43y2021i2d10.1007_s00291-021-00635-y.html
   My bibliography  Save this article

Mixed-integer programming approaches for the time-constrained maximal covering routing problem

Author

Listed:
  • Markus Sinnl

    (Johannes Kepler University Linz
    Johannes Kepler University Linz)

Abstract

In this paper, we study the recently introduced time-constrained maximal covering routing problem. In this problem, we are given a central depot, a set of facilities, and a set of customers. Each customer is associated with a subset of the facilities which can cover it. A feasible solution consists of k Hamiltonian cycles on subsets of the facilities and the central depot. Each cycle must contain the depot and must respect a given distance limit. The goal is to maximize the number of customers covered by facilities contained in the cycles. We develop two exact solution algorithms for the problem based on new mixed-integer programming models. One algorithm is based on a compact model, while the other model contains an exponential number of constraints, which are separated on-the-fly, i.e., we use branch-and-cut. We also describe preprocessing techniques, valid inequalities and primal heuristics for both models. We evaluate our solution approaches on the instances from literature and our algorithms are able to find the provably optimal solution for 267 out of 270 instances, including 123 instances, for which the optimal solution was not known before. Moreover, for most of the instances, our algorithms only take a few seconds, and thus are up to five magnitudes faster than previous approaches. Finally, we also discuss some issues with the instances from literature and present some new instances.

Suggested Citation

  • Markus Sinnl, 2021. "Mixed-integer programming approaches for the time-constrained maximal covering routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(2), pages 497-542, June.
  • Handle: RePEc:spr:orspec:v:43:y:2021:i:2:d:10.1007_s00291-021-00635-y
    DOI: 10.1007/s00291-021-00635-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-021-00635-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-021-00635-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Afsaneh Amiri & Majid Salari, 2019. "Time-constrained maximal covering routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 415-468, June.
    2. Gerhard Reinelt, 1991. "TSPLIB—A Traveling Salesman Problem Library," INFORMS Journal on Computing, INFORMS, vol. 3(4), pages 376-384, November.
    3. Bruce L. Golden & Larry Levy & Rakesh Vohra, 1987. "The orienteering problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(3), pages 307-318, June.
    4. Morteza Keshtkaran & Koorush Ziarati & Andrea Bettinelli & Daniele Vigo, 2016. "Enhanced exact solution methods for the Team Orienteering Problem," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 591-601, January.
    5. Gunawan, Aldy & Lau, Hoong Chuin & Vansteenwegen, Pieter, 2016. "Orienteering Problem: A survey of recent variants, solution approaches and applications," European Journal of Operational Research, Elsevier, vol. 255(2), pages 315-332.
    6. Richard Church & Charles R. Velle, 1974. "The Maximal Covering Location Problem," Papers in Regional Science, Wiley Blackwell, vol. 32(1), pages 101-118, January.
    7. Chao, I-Ming & Golden, Bruce L. & Wasil, Edward A., 1996. "The team orienteering problem," European Journal of Operational Research, Elsevier, vol. 88(3), pages 464-474, February.
    8. Matteo Fischetti & Juan José Salazar González & Paolo Toth, 1998. "Solving the Orienteering Problem through Branch-and-Cut," INFORMS Journal on Computing, INFORMS, vol. 10(2), pages 133-148, May.
    9. Francesco Maffioli & Anna Sciomachen, 1997. "A mixed-integer model for solving ordering problems with side constraints," Annals of Operations Research, Springer, vol. 69(0), pages 277-297, January.
    10. Leifer, Adrienne C. & Rosenwein, Moshe B., 1994. "Strong linear programming relaxations for the orienteering problem," European Journal of Operational Research, Elsevier, vol. 73(3), pages 517-523, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Afsaneh Amiri & Majid Salari, 2019. "Time-constrained maximal covering routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 415-468, June.
    2. Kim, Hyunjoon & Kim, Byung-In, 2022. "Hybrid dynamic programming with bounding algorithm for the multi-profit orienteering problem," European Journal of Operational Research, Elsevier, vol. 303(2), pages 550-566.
    3. Bian, Zheyong & Liu, Xiang, 2018. "A real-time adjustment strategy for the operational level stochastic orienteering problem: A simulation-aided optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 246-266.
    4. Kobeaga, Gorka & Rojas-Delgado, Jairo & Merino, María & Lozano, Jose A., 2024. "A revisited branch-and-cut algorithm for large-scale orienteering problems," European Journal of Operational Research, Elsevier, vol. 313(1), pages 44-68.
    5. Dominique Feillet & Pierre Dejax & Michel Gendreau, 2005. "Traveling Salesman Problems with Profits," Transportation Science, INFORMS, vol. 39(2), pages 188-205, May.
    6. Qinxiao Yu & Yossiri Adulyasak & Louis-Martin Rousseau & Ning Zhu & Shoufeng Ma, 2022. "Team Orienteering with Time-Varying Profit," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 262-280, January.
    7. Gunawan, Aldy & Lau, Hoong Chuin & Vansteenwegen, Pieter, 2016. "Orienteering Problem: A survey of recent variants, solution approaches and applications," European Journal of Operational Research, Elsevier, vol. 255(2), pages 315-332.
    8. Zhao, Yanlu & Alfandari, Laurent, 2020. "Design of diversified package tours for the digital travel industry : A branch-cut-and-price approach," European Journal of Operational Research, Elsevier, vol. 285(3), pages 825-843.
    9. Orlis, Christos & Laganá, Demetrio & Dullaert, Wout & Vigo, Daniele, 2020. "Distribution with Quality of Service Considerations: The Capacitated Routing Problem with Profits and Service Level Requirements," Omega, Elsevier, vol. 93(C).
    10. Wei Zhang & Kai Wang & Shuaian Wang & Gilbert Laporte, 2020. "Clustered coverage orienteering problem of unmanned surface vehicles for water sampling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(5), pages 353-367, August.
    11. Pamela J. Palomo-Martínez & M. Angélica Salazar-Aguilar & Víctor M. Albornoz, 2017. "Formulations for the orienteering problem with additional constraints," Annals of Operations Research, Springer, vol. 258(2), pages 503-545, November.
    12. Javier Panadero & Eva Barrena & Angel A. Juan & David Canca, 2022. "The Stochastic Team Orienteering Problem with Position-Dependent Rewards," Mathematics, MDPI, vol. 10(16), pages 1-25, August.
    13. Vansteenwegen, Pieter & Souffriau, Wouter & Oudheusden, Dirk Van, 2011. "The orienteering problem: A survey," European Journal of Operational Research, Elsevier, vol. 209(1), pages 1-10, February.
    14. Dang, Duc-Cuong & Guibadj, Rym Nesrine & Moukrim, Aziz, 2013. "An effective PSO-inspired algorithm for the team orienteering problem," European Journal of Operational Research, Elsevier, vol. 229(2), pages 332-344.
    15. Thomas R. Visser & Remy Spliet, 2020. "Efficient Move Evaluations for Time-Dependent Vehicle Routing Problems," Transportation Science, INFORMS, vol. 54(4), pages 1091-1112, July.
    16. Fatih Rahim & Canan Sepil, 2014. "A location-routing problem in glass recycling," Annals of Operations Research, Springer, vol. 223(1), pages 329-353, December.
    17. J Renaud & F F Boctor & G Laporte, 2004. "Efficient heuristics for Median Cycle Problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(2), pages 179-186, February.
    18. Antonio R. Uguina & Juan F. Gomez & Javier Panadero & Anna Martínez-Gavara & Angel A. Juan, 2024. "A Learnheuristic Algorithm Based on Thompson Sampling for the Heterogeneous and Dynamic Team Orienteering Problem," Mathematics, MDPI, vol. 12(11), pages 1-19, June.
    19. Ruiz-Meza, José & Montoya-Torres, Jairo R., 2022. "A systematic literature review for the tourist trip design problem: Extensions, solution techniques and future research lines," Operations Research Perspectives, Elsevier, vol. 9(C).
    20. Pablo A. Miranda-Gonzalez & Javier Maturana-Ross & Carola A. Blazquez & Guillermo Cabrera-Guerrero, 2021. "Exact Formulation and Analysis for the Bi-Objective Insular Traveling Salesman Problem," Mathematics, MDPI, vol. 9(21), pages 1-33, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:43:y:2021:i:2:d:10.1007_s00291-021-00635-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.