Where the really hard problems aren’t
Author
Abstract
Suggested Citation
DOI: 10.1016/j.orp.2020.100160
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Gerhard Reinelt, 1991. "TSPLIB—A Traveling Salesman Problem Library," INFORMS Journal on Computing, INFORMS, vol. 3(4), pages 376-384, November.
- S. Lin & B. W. Kernighan, 1973. "An Effective Heuristic Algorithm for the Traveling-Salesman Problem," Operations Research, INFORMS, vol. 21(2), pages 498-516, April.
- John D. C. Little & Katta G. Murty & Dura W. Sweeney & Caroline Karel, 1963. "An Algorithm for the Traveling Salesman Problem," Operations Research, INFORMS, vol. 11(6), pages 972-989, December.
- Rego, César & Gamboa, Dorabela & Glover, Fred & Osterman, Colin, 2011. "Traveling salesman problem heuristics: Leading methods, implementations and latest advances," European Journal of Operational Research, Elsevier, vol. 211(3), pages 427-441, June.
- G. Dantzig & R. Fulkerson & S. Johnson, 1954. "Solution of a Large-Scale Traveling-Salesman Problem," Operations Research, INFORMS, vol. 2(4), pages 393-410, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Braam, Florian & van den Berg, Daan, 2022. "Which rectangle sets have perfect packings?," Operations Research Perspectives, Elsevier, vol. 9(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gary R. Waissi & Pragya Kaushal, 2020. "A polynomial matrix processing heuristic algorithm for finding high quality feasible solutions for the TSP," OPSEARCH, Springer;Operational Research Society of India, vol. 57(1), pages 73-87, March.
- Muren, & Wu, Jianjun & Zhou, Li & Du, Zhiping & Lv, Ying, 2019. "Mixed steepest descent algorithm for the traveling salesman problem and application in air logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 87-102.
- A. S. Santos & A. M. Madureira & M. L. R. Varela, 2018. "The Influence of Problem Specific Neighborhood Structures in Metaheuristics Performance," Journal of Mathematics, Hindawi, vol. 2018, pages 1-14, July.
- Bruce Golden & Zahra Naji-Azimi & S. Raghavan & Majid Salari & Paolo Toth, 2012. "The Generalized Covering Salesman Problem," INFORMS Journal on Computing, INFORMS, vol. 24(4), pages 534-553, November.
- Burger, M. & Su, Z. & De Schutter, B., 2018. "A node current-based 2-index formulation for the fixed-destination multi-depot travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 265(2), pages 463-477.
- Bernardino, Raquel & Paias, Ana, 2018. "Solving the family traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 267(2), pages 453-466.
- Francesco Carrabs & Jean-François Cordeau & Gilbert Laporte, 2007. "Variable Neighborhood Search for the Pickup and Delivery Traveling Salesman Problem with LIFO Loading," INFORMS Journal on Computing, INFORMS, vol. 19(4), pages 618-632, November.
- J Renaud & F F Boctor & G Laporte, 2004. "Efficient heuristics for Median Cycle Problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(2), pages 179-186, February.
- Lancia, Giuseppe & Vidoni, Paolo, 2020. "Finding the largest triangle in a graph in expected quadratic time," European Journal of Operational Research, Elsevier, vol. 286(2), pages 458-467.
- Daniel Martins & Gabriel M. Vianna & Isabel Rosseti & Simone L. Martins & Alexandre Plastino, 2018. "Making a state-of-the-art heuristic faster with data mining," Annals of Operations Research, Springer, vol. 263(1), pages 141-162, April.
- Yuan Sun & Andreas Ernst & Xiaodong Li & Jake Weiner, 2021. "Generalization of machine learning for problem reduction: a case study on travelling salesman problems," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 607-633, September.
- Aardal, K.I. & van Hoesel, S., 1995. "Polyhedral Techniques in Combinatorial Optimization," Other publications TiSEM ed028a07-eb6a-4c8d-8f21-d, Tilburg University, School of Economics and Management.
- Sheldon H. Jacobson & Shane N. Hall & Laura A. McLay & Jeffrey E. Orosz, 2005. "Performance Analysis of Cyclical Simulated Annealing Algorithms," Methodology and Computing in Applied Probability, Springer, vol. 7(2), pages 183-201, June.
- Lucas García & Pedro M. Talaván & Javier Yáñez, 2022. "The 2-opt behavior of the Hopfield Network applied to the TSP," Operational Research, Springer, vol. 22(2), pages 1127-1155, April.
- Tsubakitani, Shigeru & Evans, James R., 1998. "An empirical study of a new metaheuristic for the traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 104(1), pages 113-128, January.
- G Laporte, 2010. "A concise guide to the Traveling Salesman Problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 35-40, January.
- Balma, Ali & Salem, Safa Ben & Mrad, Mehdi & Ladhari, Talel, 2018. "Strong multi-commodity flow formulations for the asymmetric traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 271(1), pages 72-79.
- William Cook & Daniel G. Espinoza & Marcos Goycoolea, 2007. "Computing with Domino-Parity Inequalities for the Traveling Salesman Problem (TSP)," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 356-365, August.
- Zang, Xiaoning & Jiang, Li & Liang, Changyong & Fang, Xiang, 2023. "Coordinated home and locker deliveries: An exact approach for the urban delivery problem with conflicting time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
- Pablo Moscato & Michael G. Norman, 1998. "On the Performance of Heuristics on Finite and Infinite Fractal Instances of the Euclidean Traveling Salesman Problem," INFORMS Journal on Computing, INFORMS, vol. 10(2), pages 121-132, May.
More about this item
Keywords
ATSP; TSP; Replication; Instance hardness; Branch and bound;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:oprepe:v:7:y:2020:i:c:s2214716020300506. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/operations-research-perspectives .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.