IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v283y2020i3p1081-1093.html
   My bibliography  Save this article

Risk management of renewable power producers from co-dependencies in cash flows

Author

Listed:
  • Bhattacharya, Saptarshi
  • Gupta, Aparna
  • Kar, Koushik
  • Owusu, Abena

Abstract

Increasing adoption of renewable energy, which is inherently intermittent, poses several business risks for renewable energy producers. We identify the core co-dependencies of electricity demand, temperature and radiation risk exposures of a solar energy producer at different times of the year, which offer a valuable risk mitigation opportunity. By capturing the co-dependencies in a vector autoregressive, multivariate GARCH model, we investigate the extent of natural hedge embedded in the solar energy producer’s cash flows. We further develop the framework to use explicit optimal cross hedging strategies for risk mitigation using temperature-based weather derivatives. We find that there is significant benefit of natural hedge in certain months of the year, while in others, explicit hedges can effectively modify risk exposure.

Suggested Citation

  • Bhattacharya, Saptarshi & Gupta, Aparna & Kar, Koushik & Owusu, Abena, 2020. "Risk management of renewable power producers from co-dependencies in cash flows," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1081-1093.
  • Handle: RePEc:eee:ejores:v:283:y:2020:i:3:p:1081-1093
    DOI: 10.1016/j.ejor.2019.11.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719309816
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.11.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Weron, R & Bierbrauer, M & Trück, S, 2004. "Modeling electricity prices: jump diffusion and regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 39-48.
    2. Cao, Melanie & Wei, Jason, 2005. "Stock market returns: A note on temperature anomaly," Journal of Banking & Finance, Elsevier, vol. 29(6), pages 1559-1573, June.
    3. Doege, Jörg & Fehr, Max & Hinz, Juri & Lüthi, Hans-Jakob & Wilhelm, Martina, 2009. "Risk management in power markets: The Hedging value of production flexibility," European Journal of Operational Research, Elsevier, vol. 199(3), pages 936-943, December.
    4. Sadorsky, Perry, 2012. "Modeling renewable energy company risk," Energy Policy, Elsevier, vol. 40(C), pages 39-48.
    5. Deng, S.J. & Oren, S.S., 2006. "Electricity derivatives and risk management," Energy, Elsevier, vol. 31(6), pages 940-953.
    6. Francisco Pérez-González & Hayong Yun, 2013. "Risk Management and Firm Value: Evidence from Weather Derivatives," Journal of Finance, American Finance Association, vol. 68(5), pages 2143-2176, October.
    7. Frank Schiller & Gerold Seidler & Maximilian Wimmer, 2012. "Temperature models for pricing weather derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 12(3), pages 489-500, March.
    8. Vehvilainen, Iivo & Keppo, Jussi, 2003. "Managing electricity market price risk," European Journal of Operational Research, Elsevier, vol. 145(1), pages 136-147, February.
    9. Yumi Oum & Shmuel Oren & Shijie Deng, 2006. "Hedging quantity risks with standard power options in a competitive wholesale electricity market," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(7), pages 697-712, October.
    10. Alvaro Cartea & Marcelo Figueroa, 2005. "Pricing in Electricity Markets: A Mean Reverting Jump Diffusion Model with Seasonality," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(4), pages 313-335.
    11. Paul Lehmann & Felix Creutzig & Melf-Hinrich Ehlers & Nele Friedrichsen & Clemens Heuson & Lion Hirth & Robert Pietzcker, 2012. "Carbon Lock-Out: Advancing Renewable Energy Policy in Europe," Energies, MDPI, vol. 5(2), pages 1-32, February.
    12. Coulon, Michael & Powell, Warren B. & Sircar, Ronnie, 2013. "A model for hedging load and price risk in the Texas electricity market," Energy Economics, Elsevier, vol. 40(C), pages 976-988.
    13. Yumi Oum & Shmuel S. Oren, 2010. "Optimal Static Hedging of Volumetric Risk in a Competitive Wholesale Electricity Market," Decision Analysis, INFORMS, vol. 7(1), pages 107-122, March.
    14. Lee, Yongheon & Oren, Shmuel S., 2009. "An equilibrium pricing model for weather derivatives in a multi-commodity setting," Energy Economics, Elsevier, vol. 31(5), pages 702-713, September.
    15. Charles C. Yang & Patrick L. Brockett & Min-Ming Wen, 2009. "Basis risk and hedging efficiency of weather derivatives," Journal of Risk Finance, Emerald Group Publishing, vol. 10(5), pages 517-536, November.
    16. Devabhaktuni, Vijay & Alam, Mansoor & Shekara Sreenadh Reddy Depuru, Soma & Green, Robert C. & Nims, Douglas & Near, Craig, 2013. "Solar energy: Trends and enabling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 555-564.
    17. Calum G. Turvey, 2001. "Weather Derivatives for Specific Event Risks in Agriculture," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 23(2), pages 333-351.
    18. Patrick L. Brockett & Mulong Wang & Chuanhou Yang, 2005. "Weather Derivatives and Weather Risk Management," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 8(1), pages 127-140, March.
    19. Sanda, Gaute Egeland & Olsen, Eirik Tandberg & Fleten, Stein-Erik, 2013. "Selective hedging in hydro-based electricity companies," Energy Economics, Elsevier, vol. 40(C), pages 326-338.
    20. Wüstenhagen, Rolf & Menichetti, Emanuela, 2012. "Strategic choices for renewable energy investment: Conceptual framework and opportunities for further research," Energy Policy, Elsevier, vol. 40(C), pages 1-10.
    21. Falbo, P. & Felletti, D. & Stefani, S., 2010. "Integrated risk management for an electricity producer," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1620-1627, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Appiah, Michael & Ashraf, Sania & Tiwari, Aviral Kumar & Gyamfi, Bright Akwasi & Onifade, Stephen Taiwo, 2023. "Does financialization enhance renewable energy development in Sub-Saharan African countries?," Energy Economics, Elsevier, vol. 125(C).
    2. Gupta, Aparna & Palepu, Sai, 2024. "Designing risk-free service for renewable wind and solar resources," European Journal of Operational Research, Elsevier, vol. 315(2), pages 715-728.
    3. Yuji Yamada & Takuji Matsumoto, 2021. "Going for Derivatives or Forwards? Minimizing Cashflow Fluctuations of Electricity Transactions on Power Markets," Energies, MDPI, vol. 14(21), pages 1-28, November.
    4. repec:cte:wsrepe:38369 is not listed on IDEAS
    5. Takuji Matsumoto & Yuji Yamada, 2021. "Customized yet Standardized Temperature Derivatives: A Non-Parametric Approach with Suitable Basis Selection for Ensuring Robustness," Energies, MDPI, vol. 14(11), pages 1-24, June.
    6. Magni, Carlo Alberto & Marchioni, Andrea & Baschieri, Davide, 2022. "Impact of financing and payout policy on the economic profitability of solar photovoltaic plants," International Journal of Production Economics, Elsevier, vol. 244(C).
    7. Yuji Yamada & Takuji Matsumoto, 2023. "Construction of Mixed Derivatives Strategy for Wind Power Producers," Energies, MDPI, vol. 16(9), pages 1-26, April.
    8. Shinji Kuno & Kenji Tanaka & Yuji Yamada, 2022. "Effectiveness and Feasibility of Market Makers for P2P Electricity Trading," Energies, MDPI, vol. 15(12), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Aparna & Palepu, Sai, 2024. "Designing risk-free service for renewable wind and solar resources," European Journal of Operational Research, Elsevier, vol. 315(2), pages 715-728.
    2. Yuji Yamada & Takuji Matsumoto, 2023. "Construction of Mixed Derivatives Strategy for Wind Power Producers," Energies, MDPI, vol. 16(9), pages 1-26, April.
    3. Debbie Dupuis, Geneviève Gauthier, and Fréderic Godin, 2016. "Short-term Hedging for an Electricity Retailer," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    4. Matsumoto, Takuji & Yamada, Yuji, 2021. "Simultaneous hedging strategy for price and volume risks in electricity businesses using energy and weather derivatives1," Energy Economics, Elsevier, vol. 95(C).
    5. Moret, Fabio & Pinson, Pierre & Papakonstantinou, Athanasios, 2020. "Heterogeneous risk preferences in community-based electricity markets," European Journal of Operational Research, Elsevier, vol. 287(1), pages 36-48.
    6. Russo, Marianna & Bertsch, Valentin, 2020. "A looming revolution: Implications of self-generation for the risk exposure of retailers," Energy Economics, Elsevier, vol. 92(C).
    7. Souhir, Ben Amor & Heni, Boubaker & Lotfi, Belkacem, 2019. "Price risk and hedging strategies in Nord Pool electricity market evidence with sector indexes," Energy Economics, Elsevier, vol. 80(C), pages 635-655.
    8. Hesamzadeh, Mohammad Reza & Biggar, Darryl R., 2021. "Generalized FTRs for hedging inter-nodal pricing risk," Energy Economics, Elsevier, vol. 94(C).
    9. Monika Wieczorek-Kosmala, 2020. "Weather Risk Management in Energy Sector: The Polish Case," Energies, MDPI, vol. 13(4), pages 1-21, February.
    10. Pankaj Pandey & Einar Snekkenes, 2016. "Using Financial Instruments to Transfer the Information Security Risks," Future Internet, MDPI, vol. 8(2), pages 1-62, May.
    11. Godin, Frédéric & Ibrahim, Zinatu, 2021. "An analysis of electricity congestion price patterns in North America," Energy Economics, Elsevier, vol. 102(C).
    12. Johannes Kaufmann & Philipp Artur Kienscherf & Wolfgang Ketter, 2020. "Modeling and Managing Joint Price and Volumetric Risk for Volatile Electricity Portfolios," Energies, MDPI, vol. 13(14), pages 1-19, July.
    13. Rubin, Ofir David, 2010. "Equilibrium pricing in electricity markets with wind power," ISU General Staff Papers 201001010800002361, Iowa State University, Department of Economics.
    14. Mayer, Klaus & Trück, Stefan, 2018. "Electricity markets around the world," Journal of Commodity Markets, Elsevier, vol. 9(C), pages 77-100.
    15. Peña, Juan Ignacio & Rodríguez, Rosa & Mayoral, Silvia, 2020. "Tail risk of electricity futures," Energy Economics, Elsevier, vol. 91(C).
    16. Aur'elien Alfonsi & Nerea Vadillo, 2023. "Risk valuation of quanto derivatives on temperature and electricity," Papers 2310.07692, arXiv.org, revised Apr 2024.
    17. Takuji Matsumoto & Yuji Yamada, 2023. "Improving the Efficiency of Hedge Trading Using Higher-Order Standardized Weather Derivatives for Wind Power," Energies, MDPI, vol. 16(7), pages 1-22, March.
    18. Andrea Martínez Salgueiro & Maria-Antonia Tarrazon-Rodon, 2020. "Approaching rainfall-based weather derivatives pricing and operational challenges," Review of Derivatives Research, Springer, vol. 23(2), pages 163-190, July.
    19. Deschatre, Thomas & Féron, Olivier & Gruet, Pierre, 2021. "A survey of electricity spot and futures price models for risk management applications," Energy Economics, Elsevier, vol. 102(C).
    20. Å tulec, Ivana & Petljak, Kristina & Naletina, Dora, 2019. "Weather impact on retail sales: How can weather derivatives help with adverse weather deviations?," Journal of Retailing and Consumer Services, Elsevier, vol. 49(C), pages 1-10.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:283:y:2020:i:3:p:1081-1093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.