IDEAS home Printed from https://ideas.repec.org/a/ebl/ecbull/eb-21-00845.html
   My bibliography  Save this article

Informational efficiency of football transfer market

Author

Listed:
  • Andrei Shynkevich

    (Kent State University)

Abstract

Semi-strong efficiency in the association football market is examined during the last pre-COVID-19 summer registration period by using a setup introduced in the event studies in finance research. Tests of semi-strong efficiency explore the reaction of asset prices to information-generating events such as public announcements. In this paper, football players are the assets and the player's transfer from one club to another is the event. The findings indicate the overall informational efficiency of the football transfer market, although a number of anomalies (home bias, attention bias, first-mover advantage) as well as the return premium for “undervalued” players are identified.

Suggested Citation

  • Andrei Shynkevich, 2022. "Informational efficiency of football transfer market," Economics Bulletin, AccessEcon, vol. 42(2), pages 1032-1039.
  • Handle: RePEc:ebl:ecbull:eb-21-00845
    as

    Download full text from publisher

    File URL: http://www.accessecon.com/Pubs/EB/2022/Volume42/EB-22-V42-I2-P87.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giovanni Angelini & Luca De Angelis, 2017. "PARX model for football match predictions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(7), pages 795-807, November.
    2. Boshnakov, Georgi & Kharrat, Tarak & McHale, Ian G., 2017. "A bivariate Weibull count model for forecasting association football scores," International Journal of Forecasting, Elsevier, vol. 33(2), pages 458-466.
    3. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    4. Tim Kuypers, 2000. "Information and efficiency: an empirical study of a fixed odds betting market," Applied Economics, Taylor & Francis Journals, vol. 32(11), pages 1353-1363.
    5. Nikolaos Vlastakis & George Dotsis & Raphael N. Markellos, 2009. "How efficient is the European football betting market? Evidence from arbitrage and trading strategies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(5), pages 426-444.
    6. Page, Lionel, 2009. "Is there an optimistic bias on betting markets?," Economics Letters, Elsevier, vol. 102(2), pages 70-72, February.
    7. Siem Jan Koopman & Rutger Lit, 2015. "A dynamic bivariate Poisson model for analysing and forecasting match results in the English Premier League," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 167-186, January.
    8. Fama, Eugene F., 1998. "Market efficiency, long-term returns, and behavioral finance," Journal of Financial Economics, Elsevier, vol. 49(3), pages 283-306, September.
    9. Ioannis Asimakopoulos & John Goddard, 2004. "Forecasting football results and the efficiency of fixed-odds betting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(1), pages 51-66.
    10. Dixon, Mark J. & Pope, Peter F., 2004. "The value of statistical forecasts in the UK association football betting market," International Journal of Forecasting, Elsevier, vol. 20(4), pages 697-711.
    11. Fama, Eugene F, et al, 1969. "The Adjustment of Stock Prices to New Information," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 10(1), pages 1-21, February.
    12. Michael Cain & David Law & David Peel, 2000. "The Favourite‐Longshot Bias and Market Efficiency in UK Football betting," Scottish Journal of Political Economy, Scottish Economic Society, vol. 47(1), pages 25-36, February.
    13. Goddard, John, 2005. "Regression models for forecasting goals and match results in association football," International Journal of Forecasting, Elsevier, vol. 21(2), pages 331-340.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angelini, Giovanni & De Angelis, Luca, 2019. "Efficiency of online football betting markets," International Journal of Forecasting, Elsevier, vol. 35(2), pages 712-721.
    2. David Winkelmann & Marius Ötting & Christian Deutscher & Tomasz Makarewicz, 2024. "Are Betting Markets Inefficient? Evidence From Simulations and Real Data," Journal of Sports Economics, , vol. 25(1), pages 54-97, January.
    3. Gross, Johannes & Rebeggiani, Luca, 2018. "Chance or Ability? The Efficiency of the Football Betting Market Revisited," MPRA Paper 87230, University Library of Munich, Germany.
    4. Pascal Flurin Meier & Raphael Flepp & Egon Franck, 2021. "Are sports betting markets semistrong efficient? Evidence from the COVID-19 pandemic," Working Papers 387, University of Zurich, Department of Business Administration (IBW).
    5. Luca De Angelis & J. James Reade, 2023. "Home advantage and mispricing in indoor sports’ ghost games: the case of European basketball," Annals of Operations Research, Springer, vol. 325(1), pages 391-418, June.
    6. Luca De Angelis & J. James Reade, 2022. "Home advantage and mispricing in indoor sports’ ghost games: the case of European basketball," Economics Discussion Papers em-dp2022-01, Department of Economics, University of Reading.
    7. Kai Fischer & Justus Haucap, 2022. "Home advantage in professional soccer and betting market efficiency: The role of spectator crowds," Kyklos, Wiley Blackwell, vol. 75(2), pages 294-316, May.
    8. Stekler, H.O. & Sendor, David & Verlander, Richard, 2010. "Issues in sports forecasting," International Journal of Forecasting, Elsevier, vol. 26(3), pages 606-621, July.
      • Herman O. Stekler & David Sendor & Richard Verlander, 2009. "Issues in Sports Forecasting," Working Papers 2009-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    9. Alexis Direr, 2013. "Are betting markets efficient? Evidence from European Football Championships," Applied Economics, Taylor & Francis Journals, vol. 45(3), pages 343-356, January.
    10. Martin Spann & Bernd Skiera, 2009. "Sports forecasting: a comparison of the forecast accuracy of prediction markets, betting odds and tipsters," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(1), pages 55-72.
    11. Adrian R. Bell & Chris Brooks & David Matthews & Charles Sutcliffe, 2012. "Over the moon or sick as a parrot? The effects of football results on a club's share price," Applied Economics, Taylor & Francis Journals, vol. 44(26), pages 3435-3452, September.
    12. Bernardo, Giovanni & Ruberti, Massimo & Verona, Roberto, 2019. "Semi-strong inefficiency in the fixed odds betting market: Underestimating the positive impact of head coach replacement in the main European soccer leagues," The Quarterly Review of Economics and Finance, Elsevier, vol. 71(C), pages 239-246.
    13. Hassanniakalager, Arman & Sermpinis, Georgios & Stasinakis, Charalampos & Verousis, Thanos, 2020. "A conditional fuzzy inference approach in forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 196-216.
    14. Kai Fischer & Justus Haucap, 2020. "Betting Market Efficiency in the Presence of Unfamiliar Shocks: The Case of Ghost Games during the Covid-19 Pandemic," CESifo Working Paper Series 8526, CESifo.
    15. Giovanni Angelini & Luca De Angelis, 2017. "PARX model for football match predictions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(7), pages 795-807, November.
    16. Raffaele Mattera, 2023. "Forecasting binary outcomes in soccer," Annals of Operations Research, Springer, vol. 325(1), pages 115-134, June.
    17. Angelini, Giovanni & De Angelis, Luca & Singleton, Carl, 2022. "Informational efficiency and behaviour within in-play prediction markets," International Journal of Forecasting, Elsevier, vol. 38(1), pages 282-299.
    18. Maschke Mario & Schmidt Ulrich, 2011. "Das Wettmonopol in Deutschland: Status quo und Reformansätze," Zeitschrift für Wirtschaftspolitik, De Gruyter, vol. 60(1), pages 110-124, April.
    19. Singleton, Carl & Reade, J. James & Brown, Alasdair, 2020. "Going with your gut: The (In)accuracy of forecast revisions in a football score prediction game," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 89(C).
    20. Hubáček, Ondřej & Šír, Gustav, 2023. "Beating the market with a bad predictive model," International Journal of Forecasting, Elsevier, vol. 39(2), pages 691-719.

    More about this item

    Keywords

    market efficiency; event study; football transfer; cumulative abnormal return;
    All these keywords.

    JEL classification:

    • G1 - Financial Economics - - General Financial Markets
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ebl:ecbull:eb-21-00845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: John P. Conley (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.