IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v35y2019i2p722-732.html
   My bibliography  Save this article

Bayesian forecasting of UEFA Champions League under alternative seeding regimes

Author

Listed:
  • Corona, Francisco
  • Forrest, David
  • Tena, J.D.
  • Wiper, Michael

Abstract

The evaluation of seeding rules requires the use of probabilistic forecasting models both for individual matches and for the tournament. Prior papers have employed a match-level forecasting model and then used a Monte Carlo simulation of the tournament for estimating outcome probabilities, thus allowing an outcome uncertainty measure to be attached to each proposed seeding regime, for example. However, this approach does not take into account the uncertainty that may surround parameter estimates in the underlying match-level forecasting model. We propose a Bayesian approach for addressing this problem, and illustrate it by simulating the UEFA Champions League under alternative seeding regimes. We find that changes in 2015 tended to increase the uncertainty over progression to the knock-out stage, but made limited difference to which clubs would contest the final.

Suggested Citation

  • Corona, Francisco & Forrest, David & Tena, J.D. & Wiper, Michael, 2019. "Bayesian forecasting of UEFA Champions League under alternative seeding regimes," International Journal of Forecasting, Elsevier, vol. 35(2), pages 722-732.
  • Handle: RePEc:eee:intfor:v:35:y:2019:i:2:p:722-732
    DOI: 10.1016/j.ijforecast.2018.07.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207018301146
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2018.07.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scarf, Philip & Yusof, Muhammad Mat & Bilbao, Mark, 2009. "A numerical study of designs for sporting contests," European Journal of Operational Research, Elsevier, vol. 198(1), pages 190-198, October.
    2. Geenens, Gery, 2014. "On the decisiveness of a game in a tournament," European Journal of Operational Research, Elsevier, vol. 232(1), pages 156-168.
    3. P. A. Scarf & M. M. Yusof, 2011. "A numerical study of tournament structure and seeding policy for the soccer World Cup Finals," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(1), pages 43-57, February.
    4. A K Suzuki & L E B Salasar & J G Leite & F Louzada-Neto, 2010. "A Bayesian approach for predicting match outcomes: The 2006 (Association) Football World Cup," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(10), pages 1530-1539, October.
    5. Koning, Ruud H. & Koolhaas, Michael & Renes, Gusta & Ridder, Geert, 2003. "A simulation model for football championships," European Journal of Operational Research, Elsevier, vol. 148(2), pages 268-276, July.
    6. Corona Francisco & Horrillo Juan de Dios Tena & Wiper Michael Peter, 2017. "On the importance of the probabilistic model in identifying the most decisive games in a tournament," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 13(1), pages 11-23, March.
    7. Boshnakov, Georgi & Kharrat, Tarak & McHale, Ian G., 2017. "A bivariate Weibull count model for forecasting association football scores," International Journal of Forecasting, Elsevier, vol. 33(2), pages 458-466.
    8. Dagaev Dmitry & Rudyak Vladimir Yu., 2019. "Seeding the UEFA Champions League participants: evaluation of the reforms," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 15(2), pages 129-140, June.
    9. Martin, Andrew D. & Quinn, Kevin M. & Park, Jong Hee, 2011. "MCMCpack: Markov Chain Monte Carlo in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 42(i09).
    10. D Dyte & S R Clarke, 2000. "A ratings based Poisson model for World Cup soccer simulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(8), pages 993-998, August.
    11. Goddard, John, 2005. "Regression models for forecasting goals and match results in association football," International Journal of Forecasting, Elsevier, vol. 21(2), pages 331-340.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. László Csató, 2024. "Club coefficients in the UEFA Champions League: Time for shift to an Elo-based formula," International Journal of Performance Analysis in Sport, Taylor & Francis Journals, vol. 24(2), pages 119-134, March.
    2. László Csató & Dóra Gréta Petróczy, 2024. "Bibliometric indices as a measure of performance and competitive balance in the knockout stage of the UEFA Champions League," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 32(4), pages 961-988, December.
    3. László Csató, 2020. "Optimal Tournament Design: Lessons From the Men’s Handball Champions League," Journal of Sports Economics, , vol. 21(8), pages 848-868, December.
    4. András Gyimesi, 2024. "Competitive Balance in the Post-2024 Champions League and the European Super League: A Simulation Study," Journal of Sports Economics, , vol. 25(6), pages 707-734, August.
    5. Collingwood, James A.P. & Wright, Michael & Brooks, Roger J., 2023. "Simulating the progression of a professional snooker frame," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1286-1299.
    6. Oliver Engist & Erik Merkus & Felix Schafmeister, 2021. "The Effect of Seeding on Tournament Outcomes: Evidence From a Regression-Discontinuity Design," Journal of Sports Economics, , vol. 22(1), pages 115-136, January.
    7. László Csató, 2020. "The UEFA Champions League seeding is not strategy-proof since the 2015/16 season," Annals of Operations Research, Springer, vol. 292(1), pages 161-169, September.
    8. L'aszl'o Csat'o & D'ora Gr'eta Petr'oczy, 2024. "The myth of declining competitive balance in the UEFA Champions League group stage," Papers 2406.19222, arXiv.org, revised Sep 2024.
    9. Chen Cohen & Ishay Rabi & Aner Sela, 2023. "Optimal seedings in interdependent contests," Annals of Operations Research, Springer, vol. 328(2), pages 1263-1285, September.
    10. L'aszl'o Csat'o, 2023. "Club coefficients in the UEFA Champions League: Time for shift to an Elo-based formula," Papers 2304.09078, arXiv.org, revised Oct 2023.
    11. Csató, László, 2022. "Quantifying incentive (in)compatibility: A case study from sports," European Journal of Operational Research, Elsevier, vol. 302(2), pages 717-726.
    12. Csató, László & Bodnár, Gergely, 2023. "Mérhetnénk jobban a csapatok erejét a Bajnokok Ligájában? Fontos megjegyzés az Európai Labdarúgó-szövetség számára [How to better measure team strength in the Champions League. An important message," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 813-827.
    13. Csató, László & Petróczy, Dóra Gréta, 2020. "Miért igazságtalan a 2020-as labdarúgó-Európa-bajnokság kvalifikációja? [Why is qualification for the 2020 European association football championship unfair?]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 734-747.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Corona, Francisco & Forrest, David, 2017. "Evaluating significant effects from alternative seeding systems : a Bayesian approach, with an application to the UEFA Champions League," DES - Working Papers. Statistics and Econometrics. WS 24521, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Scarf, Phil & Parma, Rishikesh & McHale, Ian, 2019. "On outcome uncertainty and scoring rates in sport: The case of international rugby union," European Journal of Operational Research, Elsevier, vol. 273(2), pages 721-730.
    3. László Csató, 2020. "Optimal Tournament Design: Lessons From the Men’s Handball Champions League," Journal of Sports Economics, , vol. 21(8), pages 848-868, December.
    4. Corona Francisco & Horrillo Juan de Dios Tena & Wiper Michael Peter, 2017. "On the importance of the probabilistic model in identifying the most decisive games in a tournament," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 13(1), pages 11-23, March.
    5. Chater, Mario & Arrondel, Luc & Gayant, Jean-Pascal & Laslier, Jean-François, 2021. "Fixing match-fixing: Optimal schedules to promote competitiveness," European Journal of Operational Research, Elsevier, vol. 294(2), pages 673-683.
    6. Lahvicka, Jiri, 2013. "Impact of playoffs on seasonal uncertainty in Czech ice hockey Extraliga," MPRA Paper 44608, University Library of Munich, Germany.
    7. Sebastián Cea & Guillermo Durán & Mario Guajardo & Denis Sauré & Joaquín Siebert & Gonzalo Zamorano, 2020. "An analytics approach to the FIFA ranking procedure and the World Cup final draw," Annals of Operations Research, Springer, vol. 286(1), pages 119-146, March.
    8. Ruud H. Koning & Ian G. McHale, 2012. "Estimating Match and World Cup Winning Probabilities," Chapters, in: Wolfgang Maennig & Andrew Zimbalist (ed.), International Handbook on the Economics of Mega Sporting Events, chapter 11, Edward Elgar Publishing.
    9. Geenens, Gery, 2014. "On the decisiveness of a game in a tournament," European Journal of Operational Research, Elsevier, vol. 232(1), pages 156-168.
    10. Jiří LahviÄ ka, 2015. "The Impact of Playoffs on Seasonal Uncertainty in the Czech Ice Hockey Extraliga," Journal of Sports Economics, , vol. 16(7), pages 784-801, October.
    11. Federico Fioravanti & Fernando Delbianco & Fernando Tohmé, 2023. "The relative importance of ability, luck and motivation in team sports: a Bayesian model of performance in the English Rugby Premiership," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 715-731, September.
    12. O'Leary, Daniel E., 2017. "Crowd performance in prediction of the World Cup 2014," European Journal of Operational Research, Elsevier, vol. 260(2), pages 715-724.
    13. Fry, John & Serbera, Jean-Philippe & Wilson, Rob, 2021. "Managing performance expectations in association football," Journal of Business Research, Elsevier, vol. 135(C), pages 445-453.
    14. László Csató, 2023. "A comparative study of scoring systems by simulations," Journal of Sports Economics, , vol. 24(4), pages 526-545, May.
    15. Csató, László, 2023. "How to avoid uncompetitive games? The importance of tie-breaking rules," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1260-1269.
    16. Baboota, Rahul & Kaur, Harleen, 2019. "Predictive analysis and modelling football results using machine learning approach for English Premier League," International Journal of Forecasting, Elsevier, vol. 35(2), pages 741-755.
    17. Singleton, Carl & Reade, J. James & Brown, Alasdair, 2020. "Going with your gut: The (In)accuracy of forecast revisions in a football score prediction game," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 89(C).
    18. Hopfensitz, Astrid & Mantilla, Cesar, 2019. "Emotional expressions by sports teams: An analysis of World Cup soccer player portraits," Journal of Economic Psychology, Elsevier, vol. 75(PB).
    19. Jeroen Schokkaert & Johan Swinnen, 2016. "Uncertainty of Outcome Is Higher in the Champions League Than in the European Cup," Journal of Sports Economics, , vol. 17(2), pages 115-147, February.
    20. Groll Andreas & Kneib Thomas & Mayr Andreas & Schauberger Gunther, 2018. "On the dependency of soccer scores – a sparse bivariate Poisson model for the UEFA European football championship 2016," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 14(2), pages 65-79, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:35:y:2019:i:2:p:722-732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.