IDEAS home Printed from https://ideas.repec.org/a/bpj/jqsprt/v11y2015i4p205-218n2.html
   My bibliography  Save this article

Riding a probabilistic support vector machine to the Stanley Cup

Author

Listed:
  • Demers Simon

    (Vancouver Police Department – Planning, Research and Audit Section, Vancouver, British Columbia, Canada)

Abstract

The predictive performance of various team metrics is compared in the context of 105 best-of-seven national hockey league (NHL) playoff series that took place between 2008 and 2014 inclusively. This analysis provides renewed support for traditional box score statistics such as goal differential, especially in the form of Pythagorean expectations. A parsimonious relevance vector machine (RVM) learning approach is compared with the more common support vector machine (SVM) algorithm. Despite the potential of the RVM approach, the SVM algorithm proved to be superior in the context of hockey playoffs. The probabilistic SVM results are used to derive playoff performance expectations for NHL teams and identify playoff under-achievers and over-achievers. The results suggest that the Arizona Coyotes and the Carolina Hurricanes can both be considered Round 2 over-achievers while the Nashville Predators would be Round 2 under-achievers, even after accounting for several observable team performance metrics and playoff predictors. The Vancouver Canucks came the closest to qualify as Stanley Cup Finals under-achievers after they lost against the Boston Bruins in 2011. Overall, the results tend to support the idea that the NHL fields extremely competitive playoff teams, that chance or other intangible factors play a significant role in NHL playoff outcomes and that playoff upsets will continue to occur regularly.

Suggested Citation

  • Demers Simon, 2015. "Riding a probabilistic support vector machine to the Stanley Cup," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 11(4), pages 205-218, December.
  • Handle: RePEc:bpj:jqsprt:v:11:y:2015:i:4:p:205-218:n:2
    DOI: 10.1515/jqas-2014-0093
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jqas-2014-0093
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/jqas-2014-0093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Entine Oliver A & Small Dylan S, 2008. "The Role of Rest in the NBA Home-Court Advantage," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 4(2), pages 1-11, April.
    2. Swartz Tim B. & Tennakoon Aruni & Nathoo Farouk & Tsao Min & Sarohia Parminder, 2011. "Ups and Downs: Team Performance in Best-of-Seven Playoff Series," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 7(4), pages 1-17, October.
    3. Ben-Naim Eli & Vazquez Federico & Redner Sidney, 2006. "Parity and Predictability of Competitions," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 2(4), pages 1-14, October.
    4. Karatzoglou, Alexandros & Smola, Alexandros & Hornik, Kurt & Zeileis, Achim, 2004. "kernlab - An S4 Package for Kernel Methods in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i09).
    5. Hvattum, Lars Magnus & Arntzen, Halvard, 2010. "Using ELO ratings for match result prediction in association football," International Journal of Forecasting, Elsevier, vol. 26(3), pages 460-470, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Kai & Shi, Jian, 2020. "A gamma process based in-play prediction model for National Basketball Association games," European Journal of Operational Research, Elsevier, vol. 283(2), pages 706-713.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sumit Sarkar & Sooraj Kamath, 2023. "Does luck play a role in the determination of the rank positions in football leagues? A study of Europe’s ‘big five’," Annals of Operations Research, Springer, vol. 325(1), pages 245-260, June.
    2. Luca Pappalardo & Paolo Cintia, 2018. "Quantifying The Relation Between Performance And Success In Soccer," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(03n04), pages 1-30, May.
    3. Paul Bose & Eberhard Feess & Helge Mueller, 2022. "Favoritism towards High-Status Clubs: Evidence from German Soccer," The Journal of Law, Economics, and Organization, Oxford University Press, vol. 38(2), pages 422-478.
    4. Tsukioka, Yasutomo & Yanagi, Junya & Takada, Teruko, 2018. "Investor sentiment extracted from internet stock message boards and IPO puzzles," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 205-217.
    5. Bruzzone, Octavio A. & Logarzo, Guillermo A. & Aguirre, María B. & Virla, Eduardo G., 2018. "Intra-host interspecific larval parasitoid competition solved using modelling and bayesian statistics," Ecological Modelling, Elsevier, vol. 385(C), pages 114-123.
    6. Daniel J. Luckett & Eric B. Laber & Samer S. El‐Kamary & Cheng Fan & Ravi Jhaveri & Charles M. Perou & Fatma M. Shebl & Michael R. Kosorok, 2021. "Receiver operating characteristic curves and confidence bands for support vector machines," Biometrics, The International Biometric Society, vol. 77(4), pages 1422-1430, December.
    7. Grabisch, Michel & Kojadinovic, Ivan & Meyer, Patrick, 2008. "A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package," European Journal of Operational Research, Elsevier, vol. 186(2), pages 766-785, April.
    8. Marques António Cardoso, 2009. "Estimating Quality in Home Advantage and Competitive Balance in the Portuguese Football League," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 5(3), pages 1-19, July.
    9. Dorian Owen, 2014. "Measurement of competitive balance and uncertainty of outcome," Chapters, in: John Goddard & Peter Sloane (ed.), Handbook on the Economics of Professional Football, chapter 3, pages 41-59, Edward Elgar Publishing.
    10. Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2021. "Forecasting recovery rates on non-performing loans with machine learning," International Journal of Forecasting, Elsevier, vol. 37(1), pages 428-444.
    11. Riza, Lala Septem & Bergmeir, Christoph & Herrera, Francisco & Benítez, José M., 2015. "frbs: Fuzzy Rule-Based Systems for Classification and Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 65(i06).
    12. Karin Wolffhechel & Amanda C Hahn & Hanne Jarmer & Claire I Fisher & Benedict C Jones & Lisa M DeBruine, 2015. "Testing the Utility of a Data-Driven Approach for Assessing BMI from Face Images," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-10, October.
    13. Scoppa, Vincenzo, 2013. "Fatigue and Team Performance in Soccer: Evidence from the FIFA World Cup and the UEFA European Championship," IZA Discussion Papers 7519, Institute of Labor Economics (IZA).
    14. Chowdhury, Subhasish M. & Jewell, Sarah & Singleton, Carl, 2024. "Can awareness reduce (and reverse) identity-driven bias in judgement? Evidence from international cricket," Journal of Economic Behavior & Organization, Elsevier, vol. 226(C).
    15. Csató, László, 2023. "How to avoid uncompetitive games? The importance of tie-breaking rules," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1260-1269.
    16. Baboota, Rahul & Kaur, Harleen, 2019. "Predictive analysis and modelling football results using machine learning approach for English Premier League," International Journal of Forecasting, Elsevier, vol. 35(2), pages 741-755.
    17. Angelini, Giovanni & Candila, Vincenzo & De Angelis, Luca, 2022. "Weighted Elo rating for tennis match predictions," European Journal of Operational Research, Elsevier, vol. 297(1), pages 120-132.
    18. Maria Bolsinova & Gunter Maris & Abe D. Hofman & Han L. J. van der Maas & Matthieu J. S. Brinkhuis, 2022. "Urnings: A new method for tracking dynamically changing parameters in paired comparison systems," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(1), pages 91-118, January.
    19. Andrea S Martinez-Vernon & James A Covington & Ramesh P Arasaradnam & Siavash Esfahani & Nicola O’Connell & Ioannis Kyrou & Richard S Savage, 2018. "An improved machine learning pipeline for urinary volatiles disease detection: Diagnosing diabetes," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-20, September.
    20. Vincenzo Scoppa, 2015. "Fatigue and Team Performance in Soccer," Journal of Sports Economics, , vol. 16(5), pages 482-507, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:11:y:2015:i:4:p:205-218:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.