IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v278y2019i2p546-562.html
   My bibliography  Save this article

On exact solution approaches for the longest induced path problem

Author

Listed:
  • Matsypura, Dmytro
  • Veremyev, Alexander
  • Prokopyev, Oleg A.
  • Pasiliao, Eduardo L.

Abstract

The graph diameter, which is defined as the length of the longest shortest path in a graph, is often used to quantify graph communication properties. In particular, the graph diameter provides an intuitive measure of the worst-case pairwise distance. However, in many practical settings, where vertices can either fail or be overloaded or can be destroyed by an adversary and thus cannot be used in any communication or transportation path, it is natural to consider other possible measures of the worst-case distance. One such measure is the longest induced path. The longest induced path problem is defined as the problem of finding a subset of vertices of the largest cardinality such that the induced subgraph is a simple path. In contrast to the polynomially computable graph diameter, this problem is NP-hard. In this paper, we focus on exact solution approaches for the problem based on linear integer programming (IP) techniques. We first propose three conceptually different linear IP models and study their basic properties. To improve the performance of the standard IP solvers, we propose an exact iterative algorithm that solves a sequence of smaller IPs to obtain an optimal solution for the original problem. In addition, we develop a heuristic capable of finding induced paths in large networks. Finally, we conduct an extensive computational study to evaluate the performance of the proposed solution methods.

Suggested Citation

  • Matsypura, Dmytro & Veremyev, Alexander & Prokopyev, Oleg A. & Pasiliao, Eduardo L., 2019. "On exact solution approaches for the longest induced path problem," European Journal of Operational Research, Elsevier, vol. 278(2), pages 546-562.
  • Handle: RePEc:eee:ejores:v:278:y:2019:i:2:p:546-562
    DOI: 10.1016/j.ejor.2019.04.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719303315
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.04.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Veremyev, Alexander & Prokopyev, Oleg A. & Boginski, Vladimir & Pasiliao, Eduardo L., 2014. "Finding maximum subgraphs with relatively large vertex connectivity," European Journal of Operational Research, Elsevier, vol. 239(2), pages 349-362.
    2. Alexander Veremyev & Oleg A. Prokopyev & Sergiy Butenko & Eduardo L. Pasiliao, 2016. "Exact MIP-based approaches for finding maximum quasi-cliques and dense subgraphs," Computational Optimization and Applications, Springer, vol. 64(1), pages 177-214, May.
    3. Pattillo, Jeffrey & Youssef, Nataly & Butenko, Sergiy, 2013. "On clique relaxation models in network analysis," European Journal of Operational Research, Elsevier, vol. 226(1), pages 9-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matsypura, Dmytro & Veremyev, Alexander & Pasiliao, Eduardo L. & Prokopyev, Oleg A., 2023. "Finding the most degree-central walks and paths in a graph: Exact and heuristic approaches," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1021-1036.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Veremyev, Alexander & Boginski, Vladimir & Pasiliao, Eduardo L. & Prokopyev, Oleg A., 2022. "On integer programming models for the maximum 2-club problem and its robust generalizations in sparse graphs," European Journal of Operational Research, Elsevier, vol. 297(1), pages 86-101.
    2. Zhou, Yi & Lin, Weibo & Hao, Jin-Kao & Xiao, Mingyu & Jin, Yan, 2022. "An effective branch-and-bound algorithm for the maximum s-bundle problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 27-39.
    3. Komusiewicz, Christian & Nichterlein, André & Niedermeier, Rolf & Picker, Marten, 2019. "Exact algorithms for finding well-connected 2-clubs in sparse real-world graphs: Theory and experiments," European Journal of Operational Research, Elsevier, vol. 275(3), pages 846-864.
    4. Chitra Balasubramaniam & Sergiy Butenko, 2017. "On robust clusters of minimum cardinality in networks," Annals of Operations Research, Springer, vol. 249(1), pages 17-37, February.
    5. Zhou, Qing & Benlic, Una & Wu, Qinghua, 2020. "An opposition-based memetic algorithm for the maximum quasi-clique problem," European Journal of Operational Research, Elsevier, vol. 286(1), pages 63-83.
    6. Svyatoslav Trukhanov & Chitra Balasubramaniam & Balabhaskar Balasundaram & Sergiy Butenko, 2013. "Algorithms for detecting optimal hereditary structures in graphs, with application to clique relaxations," Computational Optimization and Applications, Springer, vol. 56(1), pages 113-130, September.
    7. Juan Ma & Foad Mahdavi Pajouh & Balabhaskar Balasundaram & Vladimir Boginski, 2016. "The Minimum Spanning k -Core Problem with Bounded CVaR Under Probabilistic Edge Failures," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 295-307, May.
    8. Rosanna Grassi & Paolo Bartesaghi & Stefano Benati & Gian Paolo Clemente, 2021. "Multi-Attribute Community Detection in International Trade Network," Networks and Spatial Economics, Springer, vol. 21(3), pages 707-733, September.
    9. Oleksandra Yezerska & Sergiy Butenko & Vladimir L. Boginski, 2018. "Detecting robust cliques in graphs subject to uncertain edge failures," Annals of Operations Research, Springer, vol. 262(1), pages 109-132, March.
    10. Oleksandra Yezerska & Foad Mahdavi Pajouh & Alexander Veremyev & Sergiy Butenko, 2019. "Exact algorithms for the minimum s-club partitioning problem," Annals of Operations Research, Springer, vol. 276(1), pages 267-291, May.
    11. Timo Gschwind & Stefan Irnich, 2014. "Dual Inequalities for Stabilized Column Generation Revisited," Working Papers 1407, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz, revised 23 Jul 2014.
    12. Zhong, Haonan & Mahdavi Pajouh, Foad & Prokopyev, Oleg A., 2021. "Finding influential groups in networked systems: The most degree-central clique problem," Omega, Elsevier, vol. 101(C).
    13. Niels Grüttemeier & Philipp Heinrich Keßler & Christian Komusiewicz & Frank Sommer, 2024. "Efficient branch-and-bound algorithms for finding triangle-constrained 2-clubs," Journal of Combinatorial Optimization, Springer, vol. 48(3), pages 1-27, October.
    14. Alexander Veremyev & Vladimir Boginski & Eduardo Pasiliao, 2015. "Analytical characterizations of some classes of optimal strongly attack-tolerant networks and their Laplacian spectra," Journal of Global Optimization, Springer, vol. 61(1), pages 109-138, January.
    15. Farasat, Alireza & Nikolaev, Alexander G., 2016. "Signed social structure optimization for shift assignment in the nurse scheduling problem," Socio-Economic Planning Sciences, Elsevier, vol. 56(C), pages 3-13.
    16. Foad Mahdavi Pajouh & Balabhaskar Balasundaram & Illya V. Hicks, 2016. "On the 2-Club Polytope of Graphs," Operations Research, INFORMS, vol. 64(6), pages 1466-1481, December.
    17. Yezerska, Oleksandra & Mahdavi Pajouh, Foad & Butenko, Sergiy, 2017. "On biconnected and fragile subgraphs of low diameter," European Journal of Operational Research, Elsevier, vol. 263(2), pages 390-400.
    18. Saeid Rasti & Chrysafis Vogiatzis, 2019. "A survey of computational methods in protein–protein interaction networks," Annals of Operations Research, Springer, vol. 276(1), pages 35-87, May.
    19. Timo Gschwind & Stefan Irnich & Fabio Furini & Roberto Wolfler Calvo, 2017. "A Branch-and-Price Framework for Decomposing Graphs into Relaxed Cliques," Working Papers 1723, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    20. Timo Gschwind & Stefan Irnich & Isabel Podlinski, 2015. "Maximum Weight Relaxed Cliques and Russian Doll Search Revisited," Working Papers 1504, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz, revised 19 May 2015.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:278:y:2019:i:2:p:546-562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.