IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v275y2019i3p1108-1125.html
   My bibliography  Save this article

Simulation-based optimization approach for material dispatching in continuous mining systems

Author

Listed:
  • Shishvan, Masoud Soleymani
  • Benndorf, Jörg

Abstract

This paper examines a problem related to dispatching materials to spreaders in coal (lignite) mines operated under the paradigm of continuously excavated material flow. In the considered particular case, complexity arises from different material types of overburden to be placed on the dump site in pre-defined patterns that guarantee geotechnical safety. These types include wet, semi-wet and dry material, which are accessed on the excavation site according to the geological deposition and the mining plan. Controlling of the dispatch system has to take into account the extraction sequence and geological stratification on the excavation site and the available dump space per material on the dumping site. With eight excavators on the excavation site and seven spreaders on the dump site the problem is already complex, having not stated yet that random breakdowns may make some options temporarily unavailable. To optimize the dispatch system in terms of minimum idle time due to unavailability of dumping space, a new multi-stage simulation-based optimization approach is proposed. This approach consists of running alternatingly a deterministic optimization model and a stochastic simulation model. It combines simulation and algorithms to solve a transportation problem and a job-shop scheduling problem. The proposed approach is tested on a large continuous mine under given different dumping sequences, and results are reported. The merits and limitations of the proposed approach as pinpointed and farsighted operations management are discussed.

Suggested Citation

  • Shishvan, Masoud Soleymani & Benndorf, Jörg, 2019. "Simulation-based optimization approach for material dispatching in continuous mining systems," European Journal of Operational Research, Elsevier, vol. 275(3), pages 1108-1125.
  • Handle: RePEc:eee:ejores:v:275:y:2019:i:3:p:1108-1125
    DOI: 10.1016/j.ejor.2018.12.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718310671
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.12.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matamoros, Martha E. Villalba & Dimitrakopoulos, Roussos, 2016. "Stochastic short-term mine production schedule accounting for fleet allocation, operational considerations and blending restrictions," European Journal of Operational Research, Elsevier, vol. 255(3), pages 911-921.
    2. Michael C. Fu, 2002. "Feature Article: Optimization for simulation: Theory vs. Practice," INFORMS Journal on Computing, INFORMS, vol. 14(3), pages 192-215, August.
    3. Christian Almeder & Margaretha Preusser & Richard F. Hartl, 2009. "Simulation and optimization of supply chains: alternative or complementary approaches?," Springer Books, in: Herbert Meyr & Hans-Otto Günther (ed.), Supply Chain Planning, pages 29-53, Springer.
    4. Sprenger, Ralf & Mönch, Lars, 2012. "A methodology to solve large-scale cooperative transportation planning problems," European Journal of Operational Research, Elsevier, vol. 223(3), pages 626-636.
    5. Aqlan, Faisal & Lam, Sarah S. & Ramakrishnan, Sreekanth, 2014. "An integrated simulation–optimization study for consolidating production lines in a configure-to-order production environment," International Journal of Production Economics, Elsevier, vol. 148(C), pages 51-61.
    6. Hamed Jalali & Inneke Van Nieuwenhuyse, 2015. "Simulation optimization in inventory replenishment: a classification," IISE Transactions, Taylor & Francis Journals, vol. 47(11), pages 1217-1235, November.
    7. Alan S. Manne, 1960. "On the Job-Shop Scheduling Problem," Operations Research, INFORMS, vol. 8(2), pages 219-223, April.
    8. Gansterer, Margaretha & Almeder, Christian & Hartl, Richard F., 2014. "Simulation-based optimization methods for setting production planning parameters," International Journal of Production Economics, Elsevier, vol. 151(C), pages 206-213.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song Jiu, 2021. "A two-phase approach for integrating preventive maintenance with production and delivery in an unreliable coal mine," Journal of Heuristics, Springer, vol. 27(6), pages 991-1020, December.
    2. Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
    3. Hazrathosseini, Arman & Moradi Afrapoli, Ali, 2023. "The advent of digital twins in surface mining: Its time has finally arrived," Resources Policy, Elsevier, vol. 80(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noordhoek, Marije & Dullaert, Wout & Lai, David S.W. & de Leeuw, Sander, 2018. "A simulation–optimization approach for a service-constrained multi-echelon distribution network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 292-311.
    2. Romauch, Martin & Hartl, Richard F., 2017. "Capacity planning for cluster tools in the semiconductor industry," International Journal of Production Economics, Elsevier, vol. 194(C), pages 167-180.
    3. Juan, Angel A. & Faulin, Javier & Grasman, Scott E. & Rabe, Markus & Figueira, Gonçalo, 2015. "A review of simheuristics: Extending metaheuristics to deal with stochastic combinatorial optimization problems," Operations Research Perspectives, Elsevier, vol. 2(C), pages 62-72.
    4. Roberto Aringhieri & Giuliana Carello & Daniela Morale, 2016. "Supporting decision making to improve the performance of an Italian Emergency Medical Service," Annals of Operations Research, Springer, vol. 236(1), pages 131-148, January.
    5. Jianxin Fang & Brenda Cheang & Andrew Lim, 2023. "Problems and Solution Methods of Machine Scheduling in Semiconductor Manufacturing Operations: A Survey," Sustainability, MDPI, vol. 15(17), pages 1-44, August.
    6. Huang, Shiyang & Hu, Guiping & Chennault, Carrie & Su, Liu & Brandes, Elke & Heaton, Emily & Schulte, Lisa & Wang, Lizhi & Tyndall, John, 2016. "Agent-based modeling of bioenergy crop adoption and farmer decision-making," Energy, Elsevier, vol. 115(P1), pages 1188-1201.
    7. Bo Dai & Fenfen Li, 2021. "Joint Inventory Replenishment Planning of an E-Commerce Distribution System with Distribution Centers at Producers’ Locations," Logistics, MDPI, vol. 5(3), pages 1-14, July.
    8. Ullrich, Christian A., 2013. "Integrated machine scheduling and vehicle routing with time windows," European Journal of Operational Research, Elsevier, vol. 227(1), pages 152-165.
    9. Taejong Joo & Hyunyoung Jun & Dongmin Shin, 2022. "Task Allocation in Human–Machine Manufacturing Systems Using Deep Reinforcement Learning," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    10. Warren B. Powell, 2009. "What you should know about approximate dynamic programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(3), pages 239-249, April.
    11. Jack P. C. Kleijnen & Susan M. Sanchez & Thomas W. Lucas & Thomas M. Cioppa, 2005. "State-of-the-Art Review: A User’s Guide to the Brave New World of Designing Simulation Experiments," INFORMS Journal on Computing, INFORMS, vol. 17(3), pages 263-289, August.
    12. Sigrún Andradóttir & Andrei A. Prudius, 2009. "Balanced Explorative and Exploitative Search with Estimation for Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 21(2), pages 193-208, May.
    13. Stefan Vonolfen & Michael Affenzeller, 2016. "Distribution of waiting time for dynamic pickup and delivery problems," Annals of Operations Research, Springer, vol. 236(2), pages 359-382, January.
    14. L. Jeff Hong & Barry L. Nelson, 2006. "Discrete Optimization via Simulation Using COMPASS," Operations Research, INFORMS, vol. 54(1), pages 115-129, February.
    15. Kleijnen, J.P.C. & Sanchez, S.M. & Lucas, T.W. & Cioppa, T.M., 2003. "A User's Guide to the Brave New World of Designing Simulation Experiments," Discussion Paper 2003-1, Tilburg University, Center for Economic Research.
    16. Fu, Quanlu & Wu, Jiyan & Wu, Xuemian & Sun, Jian & Tian, Ye, 2024. "Managing network congestion with link-based incentives: A surrogate-based optimization approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 182(C).
    17. Pérez, Juan & Maldonado, Sebastián & González-Ramírez, Rosa, 2018. "Decision support for fleet allocation and contract renegotiation in contracted open-pit mine blasting operations," International Journal of Production Economics, Elsevier, vol. 204(C), pages 59-69.
    18. Matt Bassett & Leslie Gardner, 2013. "Designing optimal global supply chains at Dow AgroSciences," Annals of Operations Research, Springer, vol. 203(1), pages 187-216, March.
    19. Eren Özceylan & Cihan Çetinkaya & Neslihan Demirel & Ozan Sabırlıoğlu, 2017. "Impacts of Additive Manufacturing on Supply Chain Flow: A Simulation Approach in Healthcare Industry," Logistics, MDPI, vol. 2(1), pages 1-20, December.
    20. Michael C. Fu, 2008. "What you should know about simulation and derivatives," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(8), pages 723-736, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:275:y:2019:i:3:p:1108-1125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.