IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v168y2006i2p584-592.html
   My bibliography  Save this article

Nonessential objectives within network approaches for MCDM

Author

Listed:
  • Gal, Tomas
  • Hanne, Thomas

Abstract

No abstract is available for this item.

Suggested Citation

  • Gal, Tomas & Hanne, Thomas, 2006. "Nonessential objectives within network approaches for MCDM," European Journal of Operational Research, Elsevier, vol. 168(2), pages 584-592, January.
  • Handle: RePEc:eee:ejores:v:168:y:2006:i:2:p:584-592
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(04)00388-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B. Roy & Ph. Vincke, 1984. "Relational Systems of Preference with One or More Pseudo-Criteria: Some New Concepts and Results," Management Science, INFORMS, vol. 30(11), pages 1323-1335, November.
    2. Minghe Sun & Antonie Stam & Ralph E. Steuer, 1996. "Solving Multiple Objective Programming Problems Using Feed-Forward Artificial Neural Networks: The Interactive FFANN Procedure," Management Science, INFORMS, vol. 42(6), pages 835-849, June.
    3. Behnam Malakooti & Ying Q. Zhou, 1994. "Feedforward Artificial Neural Networks for Solving Discrete Multiple Criteria Decision Making Problems," Management Science, INFORMS, vol. 40(11), pages 1542-1561, November.
    4. Gal, Tomas & Leberling, Heiner, 1977. "Redundant objective functions in linear vector maximum problems and their determination," European Journal of Operational Research, Elsevier, vol. 1(3), pages 176-184, May.
    5. Gal, Tomas & Hanne, Thomas, 1999. "Consequences of dropping nonessential objectives for the application of MCDM methods," European Journal of Operational Research, Elsevier, vol. 119(2), pages 373-378, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alzorba, Shaghaf & Günther, Christian & Popovici, Nicolae & Tammer, Christiane, 2017. "A new algorithm for solving planar multiobjective location problems involving the Manhattan norm," European Journal of Operational Research, Elsevier, vol. 258(1), pages 35-46.
    2. Alexander Engau & Margaret M. Wiecek, 2008. "Interactive Coordination of Objective Decompositions in Multiobjective Programming," Management Science, INFORMS, vol. 54(7), pages 1350-1363, July.
    3. Stephan Dempe & Gabriele Eichfelder & Jörg Fliege, 2015. "On the effects of combining objectives in multi-objective optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(1), pages 1-18, August.
    4. A. B. Malinowska & D. F. M. Torres, 2008. "Computational Approach to Essential and Nonessential Objective Functions in Linear Multicriteria Optimization," Journal of Optimization Theory and Applications, Springer, vol. 139(3), pages 577-590, December.
    5. Doraid Dalalah & Mohammad Al-Tahat & Khaled Bataineh, 2012. "Mutually dependent multi-criteria decision making," Fuzzy Information and Engineering, Springer, vol. 4(2), pages 195-216, June.
    6. Boland, Natashia & Charkhgard, Hadi & Savelsbergh, Martin, 2019. "Preprocessing and cut generation techniques for multi-objective binary programming," European Journal of Operational Research, Elsevier, vol. 274(3), pages 858-875.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. B. Malinowska & D. F. M. Torres, 2008. "Computational Approach to Essential and Nonessential Objective Functions in Linear Multicriteria Optimization," Journal of Optimization Theory and Applications, Springer, vol. 139(3), pages 577-590, December.
    2. Lindroth, Peter & Patriksson, Michael & Strömberg, Ann-Brith, 2010. "Approximating the Pareto optimal set using a reduced set of objective functions," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1519-1534, December.
    3. Doumpos, Michael & Zopounidis, Constantin, 2004. "Developing sorting models using preference disaggregation analysis: An experimental investigation," European Journal of Operational Research, Elsevier, vol. 154(3), pages 585-598, May.
    4. Stephan Dempe & Gabriele Eichfelder & Jörg Fliege, 2015. "On the effects of combining objectives in multi-objective optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(1), pages 1-18, August.
    5. Alexander Engau & Margaret M. Wiecek, 2008. "Interactive Coordination of Objective Decompositions in Multiobjective Programming," Management Science, INFORMS, vol. 54(7), pages 1350-1363, July.
    6. Doumpos, Michael & Zopounidis, Constantin, 2011. "Preference disaggregation and statistical learning for multicriteria decision support: A review," European Journal of Operational Research, Elsevier, vol. 209(3), pages 203-214, March.
    7. Golmohammadi, Davood, 2011. "Neural network application for fuzzy multi-criteria decision making problems," International Journal of Production Economics, Elsevier, vol. 131(2), pages 490-504, June.
    8. Gal, Tomas & Hanne, Thomas, 1999. "Consequences of dropping nonessential objectives for the application of MCDM methods," European Journal of Operational Research, Elsevier, vol. 119(2), pages 373-378, December.
    9. C Gagné & M Gravel & W L Price, 2005. "Using metaheuristic compromise programming for the solution of multiple-objective scheduling problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(6), pages 687-698, June.
    10. Minghe Sun, 2005. "Warm-Start Routines for Solving Augmented Weighted Tchebycheff Network Programs in Multiple-Objective Network Programming," INFORMS Journal on Computing, INFORMS, vol. 17(4), pages 422-437, November.
    11. Li, Hui & Sun, Jie, 2009. "Hybridizing principles of the Electre method with case-based reasoning for data mining: Electre-CBR-I and Electre-CBR-II," European Journal of Operational Research, Elsevier, vol. 197(1), pages 214-224, August.
    12. Buyukozkan, G.Gulcin & Feyzioglu, Orhan, 2004. "A fuzzy-logic-based decision-making approach for new product development," International Journal of Production Economics, Elsevier, vol. 90(1), pages 27-45, July.
    13. Bottero, M. & Ferretti, V. & Figueira, J.R. & Greco, S. & Roy, B., 2018. "On the Choquet multiple criteria preference aggregation model: Theoretical and practical insights from a real-world application," European Journal of Operational Research, Elsevier, vol. 271(1), pages 120-140.
    14. Hokkanen, Joonas & Salminen, Pekka, 1997. "Choosing a solid waste management system using multicriteria decision analysis," European Journal of Operational Research, Elsevier, vol. 98(1), pages 19-36, April.
    15. Zopounidis, Constantin & Doumpos, Michael, 2002. "Multicriteria classification and sorting methods: A literature review," European Journal of Operational Research, Elsevier, vol. 138(2), pages 229-246, April.
    16. Roy, B. & Figueira, J.R. & Almeida-Dias, J., 2014. "Discriminating thresholds as a tool to cope with imperfect knowledge in multiple criteria decision aiding: Theoretical results and practical issues," Omega, Elsevier, vol. 43(C), pages 9-20.
    17. Alzorba, Shaghaf & Günther, Christian & Popovici, Nicolae & Tammer, Christiane, 2017. "A new algorithm for solving planar multiobjective location problems involving the Manhattan norm," European Journal of Operational Research, Elsevier, vol. 258(1), pages 35-46.
    18. Charles, V. & Udhayakumar, A. & Rhymend Uthariaraj, V., 2010. "An approach to find redundant objective function(s) and redundant constraint(s) in multi-objective nonlinear stochastic fractional programming problems," European Journal of Operational Research, Elsevier, vol. 201(2), pages 390-398, March.
    19. Mousseau, Vincent & Figueira, Jose & Dias, Luis & Gomes da Silva, Carlos & Climaco, Joao, 2003. "Resolving inconsistencies among constraints on the parameters of an MCDA model," European Journal of Operational Research, Elsevier, vol. 147(1), pages 72-93, May.
    20. Mingue SUn, 2010. "A Branch-and-Bound Algorithm for Representative Integer Efficient Solutions in Multiple Objective Network Programming Problems," Working Papers 0007, College of Business, University of Texas at San Antonio.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:168:y:2006:i:2:p:584-592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.