IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v269y2018i3p883-899.html
   My bibliography  Save this article

Value function approximation for dynamic multi-period vehicle routing

Author

Listed:
  • Ulmer, Marlin W.
  • Soeffker, Ninja
  • Mattfeld, Dirk C.

Abstract

In practical applications like parcel or technician services, customers request service during the day. Service providers decide whether to accept a customer for same-day service or to defer a customer due to resource limitations. Some requests are therefore postponed to the following day. To satisfy customer expectations, service providers aim on a high number of same-day services. Still, acceptance decisions not only affect the performance on the current, but also on the following day. Suitable acceptance, postponement, and routing decisions therefore should anticipate future routing and requests in both the current and the next day(s). The resulting decision problem is a dynamic multi-period vehicle routing problem with stochastic service requests. To approximately solve the Markov decision process of the presented problem, we present an anticipatory dynamic policy based on approximate dynamic programming. This policy estimates the potential of problem states with respect to future same-period services within and over the periods. Our policy draws on value function approximation, state space aggregation, and on a classification of the periods. We compare our policy to several policies from the literature. We analyze how and when multi-period anticipation improves the solution quality significantly and how the newly developed state space classification is essential to achieve anticipation. We finally show how multi-period anticipation changes the acceptance behavior to less discrimination of rural customers and to a fairer geographical distribution of same-day services in comparison to single-period anticipation.

Suggested Citation

  • Ulmer, Marlin W. & Soeffker, Ninja & Mattfeld, Dirk C., 2018. "Value function approximation for dynamic multi-period vehicle routing," European Journal of Operational Research, Elsevier, vol. 269(3), pages 883-899.
  • Handle: RePEc:eee:ejores:v:269:y:2018:i:3:p:883-899
    DOI: 10.1016/j.ejor.2018.02.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718301711
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.02.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Ramazan Demir, 2002. "An Approximate Dynamic Programming Approach to Multidimensional Knapsack Problems," Management Science, INFORMS, vol. 48(4), pages 550-565, April.
    2. Grazia Speranza, M., 2018. "Trends in transportation and logistics," European Journal of Operational Research, Elsevier, vol. 264(3), pages 830-836.
    3. Barrett W. Thomas, 2007. "Waiting Strategies for Anticipating Service Requests from Known Customer Locations," Transportation Science, INFORMS, vol. 41(3), pages 319-331, August.
    4. Mitrovic-Minic, Snezana & Laporte, Gilbert, 2004. "Waiting strategies for the dynamic pickup and delivery problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 38(7), pages 635-655, August.
    5. Marlin W. Ulmer & Leonard Heilig & Stefan Voß, 2017. "On the Value and Challenge of Real-Time Information in Dynamic Dispatching of Service Vehicles," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 59(3), pages 161-171, June.
    6. Henke, Tino & Speranza, M. Grazia & Wäscher, Gerhard, 2015. "The multi-compartment vehicle routing problem with flexible compartment sizes," European Journal of Operational Research, Elsevier, vol. 246(3), pages 730-743.
    7. Pérez Rivera, Arturo E. & Mes, Martijn R.K., 2017. "Anticipatory freight selection in intermodal long-haul round-trips," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 176-194.
    8. Ghiani, Gianpaolo & Manni, Emanuele & Quaranta, Antonella & Triki, Chefi, 2009. "Anticipatory algorithms for same-day courier dispatching," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(1), pages 96-106, January.
    9. Lars M. Hvattum & Arne Løkketangen & Gilbert Laporte, 2006. "Solving a Dynamic and Stochastic Vehicle Routing Problem with a Sample Scenario Hedging Heuristic," Transportation Science, INFORMS, vol. 40(4), pages 421-438, November.
    10. Gianpaolo Ghiani & Emanuele Manni & Barrett W. Thomas, 2012. "A Comparison of Anticipatory Algorithms for the Dynamic and Stochastic Traveling Salesman Problem," Transportation Science, INFORMS, vol. 46(3), pages 374-387, August.
    11. Nabila Azi & Michel Gendreau & Jean-Yves Potvin, 2012. "A dynamic vehicle routing problem with multiple delivery routes," Annals of Operations Research, Springer, vol. 199(1), pages 103-112, October.
    12. Goodson, Justin C. & Thomas, Barrett W. & Ohlmann, Jeffrey W., 2017. "A rollout algorithm framework for heuristic solutions to finite-horizon stochastic dynamic programs," European Journal of Operational Research, Elsevier, vol. 258(1), pages 216-229.
    13. Marlin W. Ulmer & Dirk C. Mattfeld & Felix Köster, 2018. "Budgeting Time for Dynamic Vehicle Routing with Stochastic Customer Requests," Transportation Science, INFORMS, vol. 52(1), pages 20-37, January.
    14. Russell W. Bent & Pascal Van Hentenryck, 2004. "Scenario-Based Planning for Partially Dynamic Vehicle Routing with Stochastic Customers," Operations Research, INFORMS, vol. 52(6), pages 977-987, December.
    15. Allan Larsen & Oli B. G. Madsen & Marius M. Solomon, 2004. "The A Priori Dynamic Traveling Salesman Problem with Time Windows," Transportation Science, INFORMS, vol. 38(4), pages 459-472, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bosse, Alexander & Ulmer, Marlin W. & Manni, Emanuele & Mattfeld, Dirk C., 2023. "Dynamic priority rules for combining on-demand passenger transportation and transportation of goods," European Journal of Operational Research, Elsevier, vol. 309(1), pages 399-408.
    2. Keskin, Merve & Branke, Juergen & Deineko, Vladimir & Strauss, Arne K., 2023. "Dynamic multi-period vehicle routing with touting," European Journal of Operational Research, Elsevier, vol. 310(1), pages 168-184.
    3. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    4. Zhang, Jian & Luo, Kelin & Florio, Alexandre M. & Van Woensel, Tom, 2023. "Solving large-scale dynamic vehicle routing problems with stochastic requests," European Journal of Operational Research, Elsevier, vol. 306(2), pages 596-614.
    5. Chen, Xinwei & Wang, Tong & Thomas, Barrett W. & Ulmer, Marlin W., 2023. "Same-day delivery with fair customer service," European Journal of Operational Research, Elsevier, vol. 308(2), pages 738-751.
    6. Avraham, Edison & Raviv, Tal, 2021. "The steady-state mobile personnel booking problem," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 266-288.
    7. Klapp, Mathias A. & Erera, Alan L. & Toriello, Alejandro, 2020. "Request acceptance in same-day delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    8. Wadi Khalid Anuar & Lai Soon Lee & Hsin-Vonn Seow & Stefan Pickl, 2022. "A Multi-Depot Dynamic Vehicle Routing Problem with Stochastic Road Capacity: An MDP Model and Dynamic Policy for Post-Decision State Rollout Algorithm in Reinforcement Learning," Mathematics, MDPI, vol. 10(15), pages 1-70, July.
    9. Yildiz, Baris & Savelsbergh, Martin, 2020. "Pricing for delivery time flexibility," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 230-256.
    10. Soeffker, Ninja & Ulmer, Marlin W. & Mattfeld, Dirk C., 2022. "Stochastic dynamic vehicle routing in the light of prescriptive analytics: A review," European Journal of Operational Research, Elsevier, vol. 298(3), pages 801-820.
    11. Nikola Mardešić & Tomislav Erdelić & Tonči Carić & Marko Đurasević, 2023. "Review of Stochastic Dynamic Vehicle Routing in the Evolving Urban Logistics Environment," Mathematics, MDPI, vol. 12(1), pages 1-44, December.
    12. Ninja Soeffker & Marlin W. Ulmer & Dirk C. Mattfeld, 2019. "Adaptive State Space Partitioning for Dynamic Decision Processes," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(3), pages 261-275, June.
    13. Ponce, Diego & Contreras, Ivan & Laporte, Gilbert, 2020. "E-commerce shipping through a third-party supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    14. Ulmer, Marlin W. & Thomas, Barrett W., 2020. "Meso-parametric value function approximation for dynamic customer acceptances in delivery routing," European Journal of Operational Research, Elsevier, vol. 285(1), pages 183-195.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    2. Marlin W. Ulmer, 2020. "Horizontal combinations of online and offline approximate dynamic programming for stochastic dynamic vehicle routing," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 279-308, March.
    3. Marlin W. Ulmer & Justin C. Goodson & Dirk C. Mattfeld & Marco Hennig, 2019. "Offline–Online Approximate Dynamic Programming for Dynamic Vehicle Routing with Stochastic Requests," Service Science, INFORMS, vol. 53(1), pages 185-202, February.
    4. Soeffker, Ninja & Ulmer, Marlin W. & Mattfeld, Dirk C., 2022. "Stochastic dynamic vehicle routing in the light of prescriptive analytics: A review," European Journal of Operational Research, Elsevier, vol. 298(3), pages 801-820.
    5. Stacy A. Voccia & Ann Melissa Campbell & Barrett W. Thomas, 2019. "The Same-Day Delivery Problem for Online Purchases," Service Science, INFORMS, vol. 53(1), pages 167-184, February.
    6. Marlin W. Ulmer & Barrett W. Thomas & Dirk C. Mattfeld, 2019. "Preemptive depot returns for dynamic same-day delivery," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(4), pages 327-361, December.
    7. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    8. Ritzinger, Ulrike & Puchinger, Jakob & Rudloff, Christian & Hartl, Richard F., 2022. "Comparison of anticipatory algorithms for a dial-a-ride problem," European Journal of Operational Research, Elsevier, vol. 301(2), pages 591-608.
    9. Marlin W. Ulmer & Alan Erera & Martin Savelsbergh, 2022. "Dynamic service area sizing in urban delivery," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 763-793, September.
    10. Bosse, Alexander & Ulmer, Marlin W. & Manni, Emanuele & Mattfeld, Dirk C., 2023. "Dynamic priority rules for combining on-demand passenger transportation and transportation of goods," European Journal of Operational Research, Elsevier, vol. 309(1), pages 399-408.
    11. Marlin W. Ulmer & Dirk C. Mattfeld & Felix Köster, 2018. "Budgeting Time for Dynamic Vehicle Routing with Stochastic Customer Requests," Transportation Science, INFORMS, vol. 52(1), pages 20-37, January.
    12. Zhang, Jian & Luo, Kelin & Florio, Alexandre M. & Van Woensel, Tom, 2023. "Solving large-scale dynamic vehicle routing problems with stochastic requests," European Journal of Operational Research, Elsevier, vol. 306(2), pages 596-614.
    13. Côté, Jean-François & Alves de Queiroz, Thiago & Gallesi, Francesco & Iori, Manuel, 2023. "A branch-and-regret algorithm for the same-day delivery problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    14. Ferrucci, Francesco & Bock, Stefan, 2015. "A general approach for controlling vehicle en-route diversions in dynamic vehicle routing problems," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 76-87.
    15. Gianpaolo Ghiani & Emanuele Manni & Barrett W. Thomas, 2012. "A Comparison of Anticipatory Algorithms for the Dynamic and Stochastic Traveling Salesman Problem," Transportation Science, INFORMS, vol. 46(3), pages 374-387, August.
    16. Marlin W. Ulmer & Leonard Heilig & Stefan Voß, 2017. "On the Value and Challenge of Real-Time Information in Dynamic Dispatching of Service Vehicles," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 59(3), pages 161-171, June.
    17. Fleckenstein, David & Klein, Robert & Steinhardt, Claudius, 2023. "Recent advances in integrating demand management and vehicle routing: A methodological review," European Journal of Operational Research, Elsevier, vol. 306(2), pages 499-518.
    18. Chen, Xinwei & Ulmer, Marlin W. & Thomas, Barrett W., 2022. "Deep Q-learning for same-day delivery with vehicles and drones," European Journal of Operational Research, Elsevier, vol. 298(3), pages 939-952.
    19. Gregorio Tirado & Lars Magnus Hvattum, 2017. "Determining departure times in dynamic and stochastic maritime routing and scheduling problems," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 553-571, December.
    20. Yan, Shangyao & Lin, Jenn-Rong & Lai, Chun-Wei, 2013. "The planning and real-time adjustment of courier routing and scheduling under stochastic travel times and demands," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 53(C), pages 34-48.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:269:y:2018:i:3:p:883-899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.