Adaptive State Space Partitioning for Dynamic Decision Processes
Author
Abstract
Suggested Citation
DOI: 10.1007/s12599-019-00582-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Martin Kowalczyk & Peter Buxmann, 2014. "Big Data and Information Processing in Organizational Decision Processes," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 6(5), pages 267-278, October.
- Matthias Jarke, 2014. "Interview with Michael Feindt on “Prescriptive Big Data Analytics”," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 6(5), pages 301-302, October.
- A Larsen & O Madsen & M Solomon, 2002. "Partially dynamic vehicle routing—models and algorithms," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(6), pages 637-646, June.
- Grazia Speranza, M., 2018. "Trends in transportation and logistics," European Journal of Operational Research, Elsevier, vol. 264(3), pages 830-836.
- Barrett W. Thomas, 2007. "Waiting Strategies for Anticipating Service Requests from Known Customer Locations," Transportation Science, INFORMS, vol. 41(3), pages 319-331, August.
- Kowalczyk, Martin & Buxmann, Peter, 2014. "Big Data and Information Processing in Organizational Decision Processes: A Multiple Case Study," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 65730, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
- Ulmer, Marlin W. & Soeffker, Ninja & Mattfeld, Dirk C., 2018. "Value function approximation for dynamic multi-period vehicle routing," European Journal of Operational Research, Elsevier, vol. 269(3), pages 883-899.
- Kowalczyk, Martin & Buxmann, Peter, 2014. "Big Data und Informationsverarbeitung in organisatorischen Entscheidungsprozessen," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 65754, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
- Martin Savelsbergh & Tom Van Woensel, 2016. "50th Anniversary Invited Article—City Logistics: Challenges and Opportunities," Transportation Science, INFORMS, vol. 50(2), pages 579-590, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Soeffker, Ninja & Ulmer, Marlin W. & Mattfeld, Dirk C., 2022. "Stochastic dynamic vehicle routing in the light of prescriptive analytics: A review," European Journal of Operational Research, Elsevier, vol. 298(3), pages 801-820.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ritzinger, Ulrike & Puchinger, Jakob & Rudloff, Christian & Hartl, Richard F., 2022. "Comparison of anticipatory algorithms for a dial-a-ride problem," European Journal of Operational Research, Elsevier, vol. 301(2), pages 591-608.
- Marlin W. Ulmer, 2020. "Horizontal combinations of online and offline approximate dynamic programming for stochastic dynamic vehicle routing," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 279-308, March.
- Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
- Zhang, Jian & Luo, Kelin & Florio, Alexandre M. & Van Woensel, Tom, 2023. "Solving large-scale dynamic vehicle routing problems with stochastic requests," European Journal of Operational Research, Elsevier, vol. 306(2), pages 596-614.
- Julian Krumeich & Dirk Werth & Peter Loos, 2016. "Prescriptive Control of Business Processes," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 58(4), pages 261-280, August.
- Soeffker, Ninja & Ulmer, Marlin W. & Mattfeld, Dirk C., 2022. "Stochastic dynamic vehicle routing in the light of prescriptive analytics: A review," European Journal of Operational Research, Elsevier, vol. 298(3), pages 801-820.
- de Camargo Fiorini, Paula & Roman Pais Seles, Bruno Michel & Chiappetta Jabbour, Charbel Jose & Barberio Mariano, Enzo & de Sousa Jabbour, Ana Beatriz Lopes, 2018. "Management theory and big data literature: From a review to a research agenda," International Journal of Information Management, Elsevier, vol. 43(C), pages 112-129.
- Zehtabian, Shohre & Larsen, Christian & Wøhlk, Sanne, 2022. "Estimation of the arrival time of deliveries by occasional drivers in a crowd-shipping setting," European Journal of Operational Research, Elsevier, vol. 303(2), pages 616-632.
- Marlin W. Ulmer & Dirk C. Mattfeld & Felix Köster, 2018. "Budgeting Time for Dynamic Vehicle Routing with Stochastic Customer Requests," Transportation Science, INFORMS, vol. 52(1), pages 20-37, January.
- Božič, Katerina & Dimovski, Vlado, 2019. "Business intelligence and analytics for value creation: The role of absorptive capacity," International Journal of Information Management, Elsevier, vol. 46(C), pages 93-103.
- Klapp, Mathias A. & Erera, Alan L. & Toriello, Alejandro, 2020. "Request acceptance in same-day delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
- Marlin W. Ulmer & Justin C. Goodson & Dirk C. Mattfeld & Marco Hennig, 2019. "Offline–Online Approximate Dynamic Programming for Dynamic Vehicle Routing with Stochastic Requests," Service Science, INFORMS, vol. 53(1), pages 185-202, February.
- Farzaneh Karami & Wim Vancroonenburg & Greet Vanden Berghe, 2020. "A periodic optimization approach to dynamic pickup and delivery problems with time windows," Journal of Scheduling, Springer, vol. 23(6), pages 711-731, December.
- Christoph Keding, 2021. "Understanding the interplay of artificial intelligence and strategic management: four decades of research in review," Management Review Quarterly, Springer, vol. 71(1), pages 91-134, February.
- Boysen, Nils & Schwerdfeger, Stefan & Weidinger, Felix, 2018. "Scheduling last-mile deliveries with truck-based autonomous robots," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1085-1099.
- Koch, Sebastian & Klein, Robert, 2020. "Route-based approximate dynamic programming for dynamic pricing in attended home delivery," European Journal of Operational Research, Elsevier, vol. 287(2), pages 633-652.
- Ossi Ylijoki & Jari Porras, 2016. "Conceptualizing Big Data: Analysis of Case Studies," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 23(4), pages 295-310, October.
- Awan, Usama & Shamim, Saqib & Khan, Zaheer & Zia, Najam Ul & Shariq, Syed Muhammad & Khan, Muhammad Naveed, 2021. "Big data analytics capability and decision-making: The role of data-driven insight on circular economy performance," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
- Patrick Mikalef & Ilias O. Pappas & John Krogstie & Michail Giannakos, 2018. "Big data analytics capabilities: a systematic literature review and research agenda," Information Systems and e-Business Management, Springer, vol. 16(3), pages 547-578, August.
- Ulmer, Marlin W. & Soeffker, Ninja & Mattfeld, Dirk C., 2018. "Value function approximation for dynamic multi-period vehicle routing," European Journal of Operational Research, Elsevier, vol. 269(3), pages 883-899.
More about this item
Keywords
Approximate dynamic programming; Dynamic service routing; State space partitioning; Data-driven modeling and simulation; Simulation-based optimization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:binfse:v:61:y:2019:i:3:d:10.1007_s12599-019-00582-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.