IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v269y2018i2p590-601.html
   My bibliography  Save this article

No-wait flowshop scheduling problem with two criteria; total tardiness and makespan

Author

Listed:
  • Allahverdi, Ali
  • Aydilek, Harun
  • Aydilek, Asiye

Abstract

We consider the m-machine no-wait flowshop scheduling problem with respect to two performance measures; total tardiness and makespan. Our objective is to minimize total tardiness subject to the constraint that the makespan is not larger than a given value. We develop dominance relations and propose an algorithm, called Algorithm AA, which is a combination of simulated annealing and insertion algorithm. Moreover, we adapt five existing algorithms, including three well performing algorithms known to minimize total tardiness, to our problem. We conduct extensive computational experiments to compare the performance of the proposed Algorithm AA with the existing algorithms under the same CPU times. We also evaluate the effect of the dominance relations. The computational analysis indicates that the proposed Algorithm AA performs significantly better than the existing algorithms. Specifically, the relative error of the Algorithm AA is about 60% less than that of the best algorithm among the five existing algorithms considered. All the results are statistically verified. Hence, the proposed Algorithm AA is recommended for the considered problem.

Suggested Citation

  • Allahverdi, Ali & Aydilek, Harun & Aydilek, Asiye, 2018. "No-wait flowshop scheduling problem with two criteria; total tardiness and makespan," European Journal of Operational Research, Elsevier, vol. 269(2), pages 590-601.
  • Handle: RePEc:eee:ejores:v:269:y:2018:i:2:p:590-601
    DOI: 10.1016/j.ejor.2017.11.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717310822
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.11.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Allahverdi, Ali, 2015. "The third comprehensive survey on scheduling problems with setup times/costs," European Journal of Operational Research, Elsevier, vol. 246(2), pages 345-378.
    2. Allahverdi, Ali & Aldowaisan, Tariq, 2004. "No-wait flowshops with bicriteria of makespan and maximum lateness," European Journal of Operational Research, Elsevier, vol. 152(1), pages 132-147, January.
    3. Nicholas G. Hall & Chelliah Sriskandarajah, 1996. "A Survey of Machine Scheduling Problems with Blocking and No-Wait in Process," Operations Research, INFORMS, vol. 44(3), pages 510-525, June.
    4. Allahverdi, Ali & Aydilek, Harun, 2014. "Total completion time with makespan constraint in no-wait flowshops with setup times," European Journal of Operational Research, Elsevier, vol. 238(3), pages 724-734.
    5. Allahverdi, Ali, 2016. "A survey of scheduling problems with no-wait in process," European Journal of Operational Research, Elsevier, vol. 255(3), pages 665-686.
    6. Alex J. Ruiz-Torres & Giuseppe Paletta & Rym M’Hallah, 2017. "Makespan minimisation with sequence-dependent machine deterioration and maintenance events," International Journal of Production Research, Taylor & Francis Journals, vol. 55(2), pages 462-479, January.
    7. A Allahverdi & T Aldowaisan, 2002. "No-wait flowshops with bicriteria of makespan and total completion time," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(9), pages 1004-1015, September.
    8. Carlo Mannino & Alessandro Mascis, 2009. "Optimal Real-Time Traffic Control in Metro Stations," Operations Research, INFORMS, vol. 57(4), pages 1026-1039, August.
    9. Nicholas G. Hall & Marc E. Posner, 2001. "Generating Experimental Data for Computational Testing with Machine Scheduling Applications," Operations Research, INFORMS, vol. 49(6), pages 854-865, December.
    10. Tseng, Lin-Yu & Lin, Ya-Tai, 2010. "A hybrid genetic algorithm for no-wait flowshop scheduling problem," International Journal of Production Economics, Elsevier, vol. 128(1), pages 144-152, November.
    11. Lin, Shih-Wei & Ying, Kuo-Ching, 2016. "Optimization of makespan for no-wait flowshop scheduling problems using efficient matheuristics," Omega, Elsevier, vol. 64(C), pages 115-125.
    12. Gedik, Ridvan & Rainwater, Chase & Nachtmann, Heather & Pohl, Ed A., 2016. "Analysis of a parallel machine scheduling problem with sequence dependent setup times and job availability intervals," European Journal of Operational Research, Elsevier, vol. 251(2), pages 640-650.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yuhang & Han, Yuyan & Wang, Yuting & Tasgetiren, M. Fatih & Li, Junqing & Gao, Kaizhou, 2023. "Intelligent optimization under the makespan constraint: Rapid evaluation mechanisms based on the critical machine for the distributed flowshop group scheduling problem," European Journal of Operational Research, Elsevier, vol. 311(3), pages 816-832.
    2. Jiang, Junwei & An, Youjun & Dong, Yuanfa & Hu, Jiawen & Li, Yinghe & Zhao, Ziye, 2023. "Integrated optimization of non-permutation flow shop scheduling and maintenance planning with variable processing speed," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    3. Wang, Julong & Liu, Zhixue & Li, Feng, 2024. "Integrated production and transportation scheduling problem under nonlinear cost structures," European Journal of Operational Research, Elsevier, vol. 313(3), pages 883-904.
    4. Wu, Xueqi & Che, Ada, 2020. "Energy-efficient no-wait permutation flow shop scheduling by adaptive multi-objective variable neighborhood search," Omega, Elsevier, vol. 94(C).
    5. Elisa Negri & Vibhor Pandhare & Laura Cattaneo & Jaskaran Singh & Marco Macchi & Jay Lee, 2021. "Field-synchronized Digital Twin framework for production scheduling with uncertainty," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 1207-1228, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Allahverdi, Ali, 2016. "A survey of scheduling problems with no-wait in process," European Journal of Operational Research, Elsevier, vol. 255(3), pages 665-686.
    2. Abdennour Azerine & Mourad Boudhar & Djamal Rebaine, 2022. "A two-machine no-wait flow shop problem with two competing agents," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 168-199, January.
    3. Allahverdi, Ali & Aydilek, Harun, 2014. "Total completion time with makespan constraint in no-wait flowshops with setup times," European Journal of Operational Research, Elsevier, vol. 238(3), pages 724-734.
    4. Polten, Lukas & Emde, Simon, 2021. "Scheduling automated guided vehicles in very narrow aisle warehouses," Omega, Elsevier, vol. 99(C).
    5. Federico Della Croce & Andrea Grosso & Fabio Salassa, 2021. "Minimizing total completion time in the two-machine no-idle no-wait flow shop problem," Journal of Heuristics, Springer, vol. 27(1), pages 159-173, April.
    6. Lin, Shih-Wei & Ying, Kuo-Ching, 2016. "Optimization of makespan for no-wait flowshop scheduling problems using efficient matheuristics," Omega, Elsevier, vol. 64(C), pages 115-125.
    7. Mac Cawley, Alejandro & Maturana, Sergio & Pascual, Rodrigo & Tortorella, Guilherme Luz, 2022. "Scheduling wine bottling operations with multiple lines and sequence-dependent set-up times: Robust formulation and a decomposition solution approach," European Journal of Operational Research, Elsevier, vol. 303(2), pages 819-839.
    8. Giorgi Tadumadze & Simon Emde & Heiko Diefenbach, 2020. "Exact and heuristic algorithms for scheduling jobs with time windows on unrelated parallel machines," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 461-497, June.
    9. Ivan Kristianto Singgih & Onyu Yu & Byung-In Kim & Jeongin Koo & Seungdoe Lee, 2020. "Production scheduling problem in a factory of automobile component primer painting," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1483-1496, August.
    10. S. S. Panwalkar & Christos Koulamas, 2020. "Three-stage ordered flow shops with either synchronous flow, blocking or no-idle machines," Journal of Scheduling, Springer, vol. 23(1), pages 145-154, February.
    11. Michael Geurtsen & Jelle Adan & Alp Akçay, 2024. "Integrated maintenance and production scheduling for unrelated parallel machines with setup times," Flexible Services and Manufacturing Journal, Springer, vol. 36(3), pages 1046-1079, September.
    12. Aldowaisan, Tariq & Allahverdi, Ali, 2004. "New heuristics for m-machine no-wait flowshop to minimize total completion time," Omega, Elsevier, vol. 32(5), pages 345-352, October.
    13. J.-C. Billaut & F. Della Croce & F. Salassa & V. T’kindt, 2019. "No-idle, no-wait: when shop scheduling meets dominoes, Eulerian paths and Hamiltonian paths," Journal of Scheduling, Springer, vol. 22(1), pages 59-68, February.
    14. Koulamas, Christos & Kyparisis, George J., 2023. "Two-stage no-wait proportionate flow shop scheduling with minimal service time variation and optional job rejection," European Journal of Operational Research, Elsevier, vol. 305(2), pages 608-616.
    15. Kalczynski, Pawel Jan & Kamburowski, Jerzy, 2007. "On no-wait and no-idle flow shops with makespan criterion," European Journal of Operational Research, Elsevier, vol. 178(3), pages 677-685, May.
    16. Liu, Yu & Zhang, Qin & Ouyang, Zhiyuan & Huang, Hong-Zhong, 2021. "Integrated production planning and preventive maintenance scheduling for synchronized parallel machines," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    17. Rossit, Daniel Alejandro & Tohmé, Fernando & Frutos, Mariano, 2018. "The Non-Permutation Flow-Shop scheduling problem: A literature review," Omega, Elsevier, vol. 77(C), pages 143-153.
    18. Qi-Xia Yang & Long-Cheng Liu & Min Huang & Tian-Run Wang, 2024. "Algorithms for a two-machine no-wait flow shop scheduling problem with two competing agents," Journal of Combinatorial Optimization, Springer, vol. 48(1), pages 1-17, August.
    19. Stefansdottir, Bryndis & Grunow, Martin & Akkerman, Renzo, 2017. "Classifying and modeling setups and cleanings in lot sizing and scheduling," European Journal of Operational Research, Elsevier, vol. 261(3), pages 849-865.
    20. Li, Shukai & Liu, Ronghui & Yang, Lixing & Gao, Ziyou, 2019. "Robust dynamic bus controls considering delay disturbances and passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 88-109.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:269:y:2018:i:2:p:590-601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.