IDEAS home Printed from https://ideas.repec.org/a/spr/joheur/v27y2021i1d10.1007_s10732-019-09430-z.html
   My bibliography  Save this article

Minimizing total completion time in the two-machine no-idle no-wait flow shop problem

Author

Listed:
  • Federico Della Croce

    (DIGEP, Politecnico di Torino
    CNR, IEIIT)

  • Andrea Grosso

    (D.I., Universitá degli Studi di Torino)

  • Fabio Salassa

    (DIGEP, Politecnico di Torino)

Abstract

We consider the two-machine total completion time flow shop problem with additional requirements. These requirements are the so-called no-idle constraint where the machines must operate with no inserted idle time and the so-called no-wait constraint where jobs cannot wait between the end of an operation and the start of the following one. We propose a matheuristic approach that uses an ILP formulation based on positional completion times variables and exploits the structural properties of the problem. The proposed approach shows very competitive performances on instances with up to 500 jobs in size.

Suggested Citation

  • Federico Della Croce & Andrea Grosso & Fabio Salassa, 2021. "Minimizing total completion time in the two-machine no-idle no-wait flow shop problem," Journal of Heuristics, Springer, vol. 27(1), pages 159-173, April.
  • Handle: RePEc:spr:joheur:v:27:y:2021:i:1:d:10.1007_s10732-019-09430-z
    DOI: 10.1007/s10732-019-09430-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10732-019-09430-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10732-019-09430-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kalczynski, Pawel Jan & Kamburowski, Jerzy, 2007. "On no-wait and no-idle flow shops with makespan criterion," European Journal of Operational Research, Elsevier, vol. 178(3), pages 677-685, May.
    2. Nicholas G. Hall & Chelliah Sriskandarajah, 1996. "A Survey of Machine Scheduling Problems with Blocking and No-Wait in Process," Operations Research, INFORMS, vol. 44(3), pages 510-525, June.
    3. Goncharov, Yaroslav & Sevastyanov, Sergey, 2009. "The flow shop problem with no-idle constraints: A review and approximation," European Journal of Operational Research, Elsevier, vol. 196(2), pages 450-456, July.
    4. Allahverdi, Ali, 2016. "A survey of scheduling problems with no-wait in process," European Journal of Operational Research, Elsevier, vol. 255(3), pages 665-686.
    5. S. M. Johnson, 1954. "Optimal two‐ and three‐stage production schedules with setup times included," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 1(1), pages 61-68, March.
    6. M. R. Garey & D. S. Johnson & Ravi Sethi, 1976. "The Complexity of Flowshop and Jobshop Scheduling," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 117-129, May.
    7. I. Adiri & D. Pohoryles, 1982. "Flowshop/no‐idle or no‐wait scheduling to minimize the sum of completion times," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 29(3), pages 495-504, September.
    8. J.-C. Billaut & F. Della Croce & F. Salassa & V. T’kindt, 2019. "No-idle, no-wait: when shop scheduling meets dominoes, Eulerian paths and Hamiltonian paths," Journal of Scheduling, Springer, vol. 22(1), pages 59-68, February.
    9. Lin, Shih-Wei & Ying, Kuo-Ching, 2016. "Optimization of makespan for no-wait flowshop scheduling problems using efficient matheuristics," Omega, Elsevier, vol. 64(C), pages 115-125.
    10. Federico Della Croce & Andrea Grosso & Fabio Salassa, 2014. "A matheuristic approach for the two-machine total completion time flow shop problem," Annals of Operations Research, Springer, vol. 213(1), pages 67-78, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lotfi Hidri & Ali Alqahtani & Achraf Gazdar & Belgacem Ben Youssef, 2021. "Green Scheduling of Identical Parallel Machines with Release Date, Delivery Time and No-Idle Machine Constraints," Sustainability, MDPI, vol. 13(16), pages 1-30, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J.-C. Billaut & F. Della Croce & F. Salassa & V. T’kindt, 2019. "No-idle, no-wait: when shop scheduling meets dominoes, Eulerian paths and Hamiltonian paths," Journal of Scheduling, Springer, vol. 22(1), pages 59-68, February.
    2. S. S. Panwalkar & Christos Koulamas, 2019. "The evolution of schematic representations of flow shop scheduling problems," Journal of Scheduling, Springer, vol. 22(4), pages 379-391, August.
    3. S. S. Panwalkar & Christos Koulamas, 2020. "Three-stage ordered flow shops with either synchronous flow, blocking or no-idle machines," Journal of Scheduling, Springer, vol. 23(1), pages 145-154, February.
    4. Abdennour Azerine & Mourad Boudhar & Djamal Rebaine, 2022. "A two-machine no-wait flow shop problem with two competing agents," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 168-199, January.
    5. Allahverdi, Ali & Aydilek, Harun & Aydilek, Asiye, 2018. "No-wait flowshop scheduling problem with two criteria; total tardiness and makespan," European Journal of Operational Research, Elsevier, vol. 269(2), pages 590-601.
    6. Allahverdi, Ali, 2016. "A survey of scheduling problems with no-wait in process," European Journal of Operational Research, Elsevier, vol. 255(3), pages 665-686.
    7. Levorato, Mario & Figueiredo, Rosa & Frota, Yuri, 2022. "Exact solutions for the two-machine robust flow shop with budgeted uncertainty," European Journal of Operational Research, Elsevier, vol. 300(1), pages 46-57.
    8. Brammer, Janis & Lutz, Bernhard & Neumann, Dirk, 2022. "Permutation flow shop scheduling with multiple lines and demand plans using reinforcement learning," European Journal of Operational Research, Elsevier, vol. 299(1), pages 75-86.
    9. Byung-Cheon Choi & Joseph Y.-T. Leung & Michael L. Pinedo, 2011. "Minimizing makespan in an ordered flow shop with machine-dependent processing times," Journal of Combinatorial Optimization, Springer, vol. 22(4), pages 797-818, November.
    10. Matthias Bultmann & Sigrid Knust & Stefan Waldherr, 2018. "Flow shop scheduling with flexible processing times," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(3), pages 809-829, July.
    11. Thierry Garaix & Salim Rostami & Xiaolan Xie, 2020. "Daily outpatient chemotherapy appointment scheduling with random deferrals," Flexible Services and Manufacturing Journal, Springer, vol. 32(1), pages 129-153, March.
    12. Li, Wei & Nault, Barrie R. & Ye, Honghan, 2019. "Trade-off balancing in scheduling for flow shop production and perioperative processes," European Journal of Operational Research, Elsevier, vol. 273(3), pages 817-830.
    13. Framinan, Jose M. & Perez-Gonzalez, Paz, 2018. "Order scheduling with tardiness objective: Improved approximate solutions," European Journal of Operational Research, Elsevier, vol. 266(3), pages 840-850.
    14. Kravchenko, Svetlana A., 1998. "A polynomial algorithm for a two-machine no-wait job-shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 106(1), pages 101-107, April.
    15. Christoph Hertrich & Christian Weiß & Heiner Ackermann & Sandy Heydrich & Sven O. Krumke, 2020. "Scheduling a proportionate flow shop of batching machines," Journal of Scheduling, Springer, vol. 23(5), pages 575-593, October.
    16. Khatami, Mostafa & Salehipour, Amir & Cheng, T.C.E., 2020. "Coupled task scheduling with exact delays: Literature review and models," European Journal of Operational Research, Elsevier, vol. 282(1), pages 19-39.
    17. Fan Yang & Roel Leus, 2021. "Scheduling hybrid flow shops with time windows," Journal of Heuristics, Springer, vol. 27(1), pages 133-158, April.
    18. Abdelhakim AitZai & Brahim Benmedjdoub & Mourad Boudhar, 2016. "Branch-and-bound and PSO algorithms for no-wait job shop scheduling," Journal of Intelligent Manufacturing, Springer, vol. 27(3), pages 679-688, June.
    19. Rubén Ruiz & Ali Allahverdi, 2007. "Some effective heuristics for no-wait flowshops with setup times to minimize total completion time," Annals of Operations Research, Springer, vol. 156(1), pages 143-171, December.
    20. Kameng Nip & Zhenbo Wang & Fabrice Talla Nobibon & Roel Leus, 2015. "A combination of flow shop scheduling and the shortest path problem," Journal of Combinatorial Optimization, Springer, vol. 29(1), pages 36-52, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joheur:v:27:y:2021:i:1:d:10.1007_s10732-019-09430-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.