IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v259y2017i3p829-846.html
   My bibliography  Save this article

Adaptive large neighborhood search heuristics for multi-tier service deployment problems in clouds

Author

Listed:
  • Gullhav, Anders N.
  • Cordeau, Jean-François
  • Hvattum, Lars Magnus
  • Nygreen, Bjørn

Abstract

This paper proposes adaptive large neighborhood search (ALNS) heuristics for two service deployment problems in a cloud computing context. The problems under study consider the deployment problem of a provider of software-as-a-service applications, and include decisions related to the replication and placement of the provided services. A novel feature of the proposed algorithms is a local search layer on top of the destroy and repair operators. In addition, we use a mixed integer programming-based repair operator in conjunction with other faster heuristic operators. Because of the different time consumption of the repair operators, we need to account for the time usage in the scoring mechanism of the adaptive operator selection. The computational study investigates the benefits of implementing a local search operator on top of the standard ALNS framework. Moreover, we also compare the proposed algorithms with a branch and price (B&P) approach previously developed for the same problems. The results of our experiments show that the benefits of the local search operators increase with the problem size. We also observe that the ALNS with the local search operators outperforms the B&P on larger problems, but it is also comparable with the B&P on smaller problems with a short run time.

Suggested Citation

  • Gullhav, Anders N. & Cordeau, Jean-François & Hvattum, Lars Magnus & Nygreen, Bjørn, 2017. "Adaptive large neighborhood search heuristics for multi-tier service deployment problems in clouds," European Journal of Operational Research, Elsevier, vol. 259(3), pages 829-846.
  • Handle: RePEc:eee:ejores:v:259:y:2017:i:3:p:829-846
    DOI: 10.1016/j.ejor.2016.11.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716309092
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.11.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    2. Hansen, Pierre & Mladenovic, Nenad, 2001. "Variable neighborhood search: Principles and applications," European Journal of Operational Research, Elsevier, vol. 130(3), pages 449-467, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Worapot Sirirak & Rapeepan Pitakaso, 2018. "Marketplace Location Decision Making and Tourism Route Planning," Administrative Sciences, MDPI, vol. 8(4), pages 1-25, November.
    2. Singh, Nitish & Dang, Quang-Vinh & Akcay, Alp & Adan, Ivo & Martagan, Tugce, 2022. "A matheuristic for AGV scheduling with battery constraints," European Journal of Operational Research, Elsevier, vol. 298(3), pages 855-873.
    3. TURKEŠ, Renata & SÖRENSEN, Kenneth & HVATTUM, Lars Magnus & BARRENA, Eva & CHENTLI, Hayet & COELHO, Leandro & DAYARIAN, Iman & GRIMAULT, Axel & GULLHAVE, Anders & IRIS, Çagatay & KESKIN, Merve & KIEFE, 2019. "Meta-analysis of metaheuristics: Quantifying the effect of adaptiveness in adaptive large neighborhood search," Working Papers 2019002, University of Antwerp, Faculty of Business and Economics.
    4. Kallestad, Jakob & Hasibi, Ramin & Hemmati, Ahmad & Sörensen, Kenneth, 2023. "A general deep reinforcement learning hyperheuristic framework for solving combinatorial optimization problems," European Journal of Operational Research, Elsevier, vol. 309(1), pages 446-468.
    5. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2018. "Co-residence based data vulnerability vs. security in cloud computing system with random server assignment," European Journal of Operational Research, Elsevier, vol. 267(2), pages 676-686.
    6. Turkeš, Renata & Sörensen, Kenneth & Hvattum, Lars Magnus, 2021. "Meta-analysis of metaheuristics: Quantifying the effect of adaptiveness in adaptive large neighborhood search," European Journal of Operational Research, Elsevier, vol. 292(2), pages 423-442.
    7. Er-Rahmadi, Btissam & Ma, Tiejun, 2022. "Data-driven mixed-Integer linear programming-based optimisation for efficient failure detection in large-scale distributed systems," European Journal of Operational Research, Elsevier, vol. 303(1), pages 337-353.
    8. Alberto Santini & Stefan Ropke & Lars Magnus Hvattum, 2018. "A comparison of acceptance criteria for the adaptive large neighbourhood search metaheuristic," Journal of Heuristics, Springer, vol. 24(5), pages 783-815, October.
    9. Pascual, Fanny & Rzadca, Krzysztof, 2018. "Colocating tasks in data centers using a side-effects performance model," European Journal of Operational Research, Elsevier, vol. 268(2), pages 450-462.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timo Hintsch, 2019. "Large Multiple Neighborhood Search for the Soft-Clustered Vehicle-Routing Problem," Working Papers 1904, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    2. Zhang, Zizhen & Qin, Hu & Wang, Kai & He, Huang & Liu, Tian, 2017. "Manpower allocation and vehicle routing problem in non-emergency ambulance transfer service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 45-59.
    3. Scholl, Joachim & Boysen, Nils & Scholl, Armin, 2023. "E-platooning: Optimizing platoon formation for long-haul transportation with electric commercial vehicles," European Journal of Operational Research, Elsevier, vol. 304(2), pages 525-542.
    4. Hintsch, Timo & Irnich, Stefan, 2018. "Large multiple neighborhood search for the clustered vehicle-routing problem," European Journal of Operational Research, Elsevier, vol. 270(1), pages 118-131.
    5. Chen, Qingfeng & Li, Kunpeng & Liu, Zhixue, 2014. "Model and algorithm for an unpaired pickup and delivery vehicle routing problem with split loads," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 218-235.
    6. François, Véronique & Arda, Yasemin & Crama, Yves & Laporte, Gilbert, 2016. "Large neighborhood search for multi-trip vehicle routing," European Journal of Operational Research, Elsevier, vol. 255(2), pages 422-441.
    7. Timo Hintsch & Stefan Irnich, 2017. "Large Multiple Neighborhood Search for the Clustered Vehicle-Routing Problem," Working Papers 1701, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    8. Bortfeldt, Andreas & Hahn, Thomas & Männel, Dirk & Mönch, Lars, 2015. "Hybrid algorithms for the vehicle routing problem with clustered backhauls and 3D loading constraints," European Journal of Operational Research, Elsevier, vol. 243(1), pages 82-96.
    9. Tu, Wei & Fang, Zhixiang & Li, Qingquan & Shaw, Shih-Lung & Chen, BiYu, 2014. "A bi-level Voronoi diagram-based metaheuristic for a large-scale multi-depot vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 84-97.
    10. Prodhon, Caroline & Prins, Christian, 2014. "A survey of recent research on location-routing problems," European Journal of Operational Research, Elsevier, vol. 238(1), pages 1-17.
    11. Iliopoulou, Christina & Makridis, Michail A., 2023. "Critical multi-link disruption identification for public transport networks: A multi-objective optimization framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    12. Martins de Sá, Elisangela & Contreras, Ivan & Cordeau, Jean-François, 2015. "Exact and heuristic algorithms for the design of hub networks with multiple lines," European Journal of Operational Research, Elsevier, vol. 246(1), pages 186-198.
    13. Maenhout, Broos & Vanhoucke, Mario, 2010. "A hybrid scatter search heuristic for personalized crew rostering in the airline industry," European Journal of Operational Research, Elsevier, vol. 206(1), pages 155-167, October.
    14. JANSSENS, Jochen & DE CORTE, Annelies & SÖRENSEN, Kenneth, 2016. "Water distribution network design optimisation with respect to reliability," Working Papers 2016007, University of Antwerp, Faculty of Business and Economics.
    15. Bach, Lukas & Hasle, Geir & Schulz, Christian, 2019. "Adaptive Large Neighborhood Search on the Graphics Processing Unit," European Journal of Operational Research, Elsevier, vol. 275(1), pages 53-66.
    16. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2018. "Minimizing Piecewise-Concave Functions Over Polyhedra," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 580-597, May.
    17. Martins, Sara & Ostermeier, Manuel & Amorim, Pedro & Hübner, Alexander & Almada-Lobo, Bernardo, 2019. "Product-oriented time window assignment for a multi-compartment vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 276(3), pages 893-909.
    18. Amina Lamghari & Roussos Dimitrakopoulos & Jacques Ferland, 2015. "A hybrid method based on linear programming and variable neighborhood descent for scheduling production in open-pit mines," Journal of Global Optimization, Springer, vol. 63(3), pages 555-582, November.
    19. SteadieSeifi, M. & Dellaert, N.P. & Nuijten, W. & Van Woensel, T., 2017. "A metaheuristic for the multimodal network flow problem with product quality preservation and empty repositioning," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 321-344.
    20. Patricia Domínguez-Marín & Stefan Nickel & Pierre Hansen & Nenad Mladenović, 2005. "Heuristic Procedures for Solving the Discrete Ordered Median Problem," Annals of Operations Research, Springer, vol. 136(1), pages 145-173, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:259:y:2017:i:3:p:829-846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.