IDEAS home Printed from https://ideas.repec.org/a/kap/jproda/v34y2010i2p151-165.html
   My bibliography  Save this article

Cross redundancy and sensitivity in DEA models

Author

Listed:
  • Kyuseok Lee
  • Kyuwan Choi

Abstract

No abstract is available for this item.

Suggested Citation

  • Kyuseok Lee & Kyuwan Choi, 2010. "Cross redundancy and sensitivity in DEA models," Journal of Productivity Analysis, Springer, vol. 34(2), pages 151-165, October.
  • Handle: RePEc:kap:jproda:v:34:y:2010:i:2:p:151-165
    DOI: 10.1007/s11123-009-0166-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11123-009-0166-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11123-009-0166-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Banker, Rajiv D. & Thrall, R. M., 1992. "Estimation of returns to scale using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 62(1), pages 74-84, October.
    2. Cook, Wade D. & Kress, Moshe & Seiford, Lawrence M., 1992. "Prioritization models for frontier decision making units in DEA," European Journal of Operational Research, Elsevier, vol. 59(2), pages 319-323, June.
    3. Golany, B & Roll, Y, 1989. "An application procedure for DEA," Omega, Elsevier, vol. 17(3), pages 237-250.
    4. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    5. Banker, Rajiv D. & Chang, Hsihui & Cooper, William W., 2004. "A simulation study of DEA and parametric frontier models in the presence of heteroscedasticity," European Journal of Operational Research, Elsevier, vol. 153(3), pages 624-640, March.
    6. Banker, R. D. & Bardhan, I. & Cooper, W. W., 1996. "A note on returns to scale in DEA," European Journal of Operational Research, Elsevier, vol. 88(3), pages 583-585, February.
    7. H. Fried & C. Lovell & S. Schmidt & S. Yaisawarng, 2002. "Accounting for Environmental Effects and Statistical Noise in Data Envelopment Analysis," Journal of Productivity Analysis, Springer, vol. 17(1), pages 157-174, January.
    8. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    9. Jesús T. Pastor & JosÉ L. Ruiz & Inmaculada Sirvent, 2002. "A Statistical Test for Nested Radial Dea Models," Operations Research, INFORMS, vol. 50(4), pages 728-735, August.
    10. Russell G. Thompson & F. D. Singleton & Robert M. Thrall & Barton A. Smith, 1986. "Comparative Site Evaluations for Locating a High-Energy Physics Lab in Texas," Interfaces, INFORMS, vol. 16(6), pages 35-49, December.
    11. Smith, P, 1990. "Data envelopment analysis applied to financial statements," Omega, Elsevier, vol. 18(2), pages 131-138.
    12. Banker, Rajiv D. & Chang, Hsihui & Cooper, William W., 1996. "Equivalence and implementation of alternative methods for determining returns to scale in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 89(3), pages 473-481, March.
    13. Dula, J. H., 1997. "Equivalences between Data Envelopment Analysis and the theory of redundancy in linear systems," European Journal of Operational Research, Elsevier, vol. 101(1), pages 51-64, August.
    14. Banker, Rajiv D. & Gadh, Vandana M. & Gorr, Wilpen L., 1993. "A Monte Carlo comparison of two production frontier estimation methods: Corrected ordinary least squares and data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 67(3), pages 332-343, June.
    15. W. Cooper & Shanling Li & L. Seiford & Kaoru Tone & R. Thrall & J. Zhu, 2001. "Sensitivity and Stability Analysis in DEA: Some Recent Developments," Journal of Productivity Analysis, Springer, vol. 15(3), pages 217-246, May.
    16. N/A, 1996. "Note:," Foreign Trade Review, , vol. 31(1-2), pages 1-1, January.
    17. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity," Econometrica, Econometric Society, vol. 50(6), pages 1393-1414, November.
    18. Lewin, Arie Y & Morey, Richard C & Cook, Thomas J, 1982. "Evaluating the administrative efficiency of courts," Omega, Elsevier, vol. 10(4), pages 401-411.
    19. Halkos, George & Salamouris, Dimitrios, 2001. "Efficiency Measures of the Greek Banking Sector: A Non-Parametric Approach for the Period 1997-1999," MPRA Paper 2858, University Library of Munich, Germany.
    20. Wagner, Janet M. & Shimshak, Daniel G., 2007. "Stepwise selection of variables in data envelopment analysis: Procedures and managerial perspectives," European Journal of Operational Research, Elsevier, vol. 180(1), pages 57-67, July.
    21. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    22. Jenkins, Larry & Anderson, Murray, 2003. "A multivariate statistical approach to reducing the number of variables in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 147(1), pages 51-61, May.
    23. Peter Smith, 1997. "Model misspecification in Data Envelopment Analysis," Annals of Operations Research, Springer, vol. 73(0), pages 233-252, October.
    24. Rajiv D. Banker, 1993. "Maximum Likelihood, Consistency and Data Envelopment Analysis: A Statistical Foundation," Management Science, INFORMS, vol. 39(10), pages 1265-1273, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bayar, Tumennasan & Cornett, Marcia Millon & Erhemjamts, Otgontsetseg & Leverty, Ty & Tehranian, Hassan, 2018. "An examination of the relation between strategic interaction among industry firms and firm performance," Journal of Banking & Finance, Elsevier, vol. 87(C), pages 248-263.
    2. Cornett, Marcia Millon & Erhemjamts, Otgontsetseg & Tehranian, Hassan, 2019. "Competitive environment and innovation intensity," Global Finance Journal, Elsevier, vol. 41(C), pages 44-59.
    3. López, Francisco J., 2011. "Generalizing cross redundancy in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 214(3), pages 716-721, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nataraja, Niranjan R. & Johnson, Andrew L., 2011. "Guidelines for using variable selection techniques in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 215(3), pages 662-669, December.
    2. Reuben Elan & Verma Bharat Bhushan & Bhat Ramesh, 2001. "Hospital Efficiency: An Empirical Analysis of District and Grant-in-Aid Hospitals in Gujarat," IIMA Working Papers WP2001-07-05, Indian Institute of Management Ahmedabad, Research and Publication Department.
    3. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    4. Imad Bou-Hamad & Abdel Latef Anouze & Ibrahim H. Osman, 2022. "A cognitive analytics management framework to select input and output variables for data envelopment analysis modeling of performance efficiency of banks using random forest and entropy of information," Annals of Operations Research, Springer, vol. 308(1), pages 63-92, January.
    5. C. Lovell & Shawna Grosskopf & Eduardo Ley & Jesús Pastor & Diego Prior & Philippe Eeckaut, 1994. "Linear programming approaches to the measurement and analysis of productive efficiency," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 2(2), pages 175-248, December.
    6. Adler, Nicole & Yazhemsky, Ekaterina, 2010. "Improving discrimination in data envelopment analysis: PCA-DEA or variable reduction," European Journal of Operational Research, Elsevier, vol. 202(1), pages 273-284, April.
    7. Sebastian Kohl & Jan Schoenfelder & Andreas Fügener & Jens O. Brunner, 2019. "The use of Data Envelopment Analysis (DEA) in healthcare with a focus on hospitals," Health Care Management Science, Springer, vol. 22(2), pages 245-286, June.
    8. Charles, Vincent & Aparicio, Juan & Zhu, Joe, 2019. "The curse of dimensionality of decision-making units: A simple approach to increase the discriminatory power of data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 279(3), pages 929-940.
    9. Peter Fernandes Wanke & Rebecca de Mattos, 2014. "Capacity Issues and Efficiency Drivers in Brazilian Bulk Terminals," Brazilian Business Review, Fucape Business School, vol. 11(5), pages 72-98, October.
    10. Peyrache, Antonio & Rose, Christiern & Sicilia, Gabriela, 2020. "Variable selection in Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 282(2), pages 644-659.
    11. Esteve, Miriam & Aparicio, Juan & Rodriguez-Sala, Jesus J. & Zhu, Joe, 2023. "Random Forests and the measurement of super-efficiency in the context of Free Disposal Hull," European Journal of Operational Research, Elsevier, vol. 304(2), pages 729-744.
    12. Jamal Ouenniche & Skarleth Carrales, 2018. "Assessing efficiency profiles of UK commercial banks: a DEA analysis with regression-based feedback," Annals of Operations Research, Springer, vol. 266(1), pages 551-587, July.
    13. Li, Susan X., 1998. "Stochastic models and variable returns to scales in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 104(3), pages 532-548, February.
    14. Kerstens, Kristiaan & Vanden Eeckaut, Philippe, 1999. "Estimating returns to scale using non-parametric deterministic technologies: A new method based on goodness-of-fit," European Journal of Operational Research, Elsevier, vol. 113(1), pages 206-214, February.
    15. M I Gonzalez-Bravo, 2007. "Prior-Ratio-Analysis procedure to improve data envelopment analysis for performance measurement," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(9), pages 1214-1222, September.
    16. Banker, Rajiv D. & Cooper, William W. & Seiford, Lawrence M. & Thrall, Robert M. & Zhu, Joe, 2004. "Returns to scale in different DEA models," European Journal of Operational Research, Elsevier, vol. 154(2), pages 345-362, April.
    17. Eskelinen, Juha, 2017. "Comparison of variable selection techniques for data envelopment analysis in a retail bank," European Journal of Operational Research, Elsevier, vol. 259(2), pages 778-788.
    18. Tone, Kaoru & Sahoo, Biresh K., 2005. "Evaluating cost efficiency and returns to scale in the Life Insurance Corporation of India using data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 39(4), pages 261-285, December.
    19. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    20. Qiwei Xie & Yuanyuan Li & Lizheng Wang & Chao Liu, 2018. "Improving discrimination in data envelopment analysis without losing information based on Renyi’s entropy," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(4), pages 1053-1068, December.

    More about this item

    Keywords

    Data envelopment analysis (DEA); Efficiency; Cross redundancy; Sensitivity analysis; Simulation; Accounting data; C67; D20; M11;
    All these keywords.

    JEL classification:

    • C67 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Input-Output Models
    • D20 - Microeconomics - - Production and Organizations - - - General
    • M11 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - Production Management

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:34:y:2010:i:2:p:151-165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.