IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v200y2010i3p881-892.html
   My bibliography  Save this article

Heuristics for container loading of furniture

Author

Listed:
  • Egeblad, Jens
  • Garavelli, Claudio
  • Lisi, Stefano
  • Pisinger, David

Abstract

We consider a container loading problem that occurs at a typical furniture manufacturer. Each furniture item has an associated profit. Given container dimensions and a set of furniture items, the problem is to determine a subset of items with maximal profit sum that is loadable in the container. In the studied company, the problem arises hundreds of times daily during transport planning. Instances may contain more than one hundred different items with irregular shapes. To solve this complex problem we apply a set of heuristics successively that each solve one part of the problem. Large items are combined in specific structures to ensure proper protection of the items during transportation and to simplify the problem. The solutions generated by the heuristic has an average loading utilization of 91.3% for the most general instances with average running times around 100 seconds.

Suggested Citation

  • Egeblad, Jens & Garavelli, Claudio & Lisi, Stefano & Pisinger, David, 2010. "Heuristics for container loading of furniture," European Journal of Operational Research, Elsevier, vol. 200(3), pages 881-892, February.
  • Handle: RePEc:eee:ejores:v:200:y:2010:i:3:p:881-892
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00056-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    2. Fred Glover, 1989. "Tabu Search---Part I," INFORMS Journal on Computing, INFORMS, vol. 1(3), pages 190-206, August.
    3. Gomes, A. Miguel & Oliveira, Jose F., 2006. "Solving Irregular Strip Packing problems by hybridising simulated annealing and linear programming," European Journal of Operational Research, Elsevier, vol. 171(3), pages 811-829, June.
    4. Egeblad, Jens & Nielsen, Benny K. & Odgaard, Allan, 2007. "Fast neighborhood search for two- and three-dimensional nesting problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1249-1266, December.
    5. Voudouris, Christos & Tsang, Edward, 1999. "Guided local search and its application to the traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 113(2), pages 469-499, March.
    6. R Alvarez-Valdes & F Parreño & J M Tamarit, 2005. "A GRASP algorithm for constrained two-dimensional non-guillotine cutting problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(4), pages 414-425, April.
    7. Sándor P. Fekete & Jörg Schepers & Jan C. van der Veen, 2007. "An Exact Algorithm for Higher-Dimensional Orthogonal Packing," Operations Research, INFORMS, vol. 55(3), pages 569-587, June.
    8. Pisinger, David, 2002. "Heuristics for the container loading problem," European Journal of Operational Research, Elsevier, vol. 141(2), pages 382-392, September.
    9. Bischoff, Eberhard E. & Marriott, Michael D., 1990. "A comparative evaluation of heuristics for container loading," European Journal of Operational Research, Elsevier, vol. 44(2), pages 267-276, January.
    10. Eley, Michael, 2002. "Solving container loading problems by block arrangement," European Journal of Operational Research, Elsevier, vol. 141(2), pages 393-409, September.
    11. Bischoff, E.E., 2006. "Three-dimensional packing of items with limited load bearing strength," European Journal of Operational Research, Elsevier, vol. 168(3), pages 952-966, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jung, Seung Hwan & Yang, Yunsi, 2023. "On the value of operational flexibility in the trailer shipment and assignment problem: Data-driven approaches and reinforcement learning," International Journal of Production Economics, Elsevier, vol. 264(C).
    2. Qiu, Huaxin & Wang, Sutong & Yin, Yunqiang & Wang, Dujuan & Wang, Yanzhang, 2022. "A deep reinforcement learning-based approach for the home delivery and installation routing problem," International Journal of Production Economics, Elsevier, vol. 244(C).
    3. Vélez-Gallego, Mario C. & Teran-Somohano, Alejandro & Smith, Alice E., 2020. "Minimizing late deliveries in a truck loading problem," European Journal of Operational Research, Elsevier, vol. 286(3), pages 919-928.
    4. Alonso, M.T. & Alvarez-Valdes, R. & Iori, M. & Parreño, F. & Tamarit, J.M., 2017. "Mathematical models for multicontainer loading problems," Omega, Elsevier, vol. 66(PA), pages 106-117.
    5. Andreas Bortfeldt & Gerhard Wäscher, 2012. "Container Loading Problems - A State-of-the-Art Review," FEMM Working Papers 120007, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    6. Ramos, António G. & Silva, Elsa & Oliveira, José F., 2018. "A new load balance methodology for container loading problem in road transportation," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1140-1152.
    7. Silva, Elsa & Ramos, António G. & Oliveira, José F., 2018. "Load balance recovery for multi-drop distribution problems: A mixed integer linear programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 62-75.
    8. Lim, Andrew & Ma, Hong & Qiu, Chaoyang & Zhu, Wenbin, 2013. "The single container loading problem with axle weight constraints," International Journal of Production Economics, Elsevier, vol. 144(1), pages 358-369.
    9. Dienstknecht, Michael & Briskorn, Dirk, 2024. "Sharing in construction projects — On determining optimal container assignments for the on-site accommodation of trades," European Journal of Operational Research, Elsevier, vol. 315(1), pages 324-337.
    10. Carlos A. Vega-Mejía & Jairo R. Montoya-Torres & Sardar M. N. Islam, 2019. "Consideration of triple bottom line objectives for sustainability in the optimization of vehicle routing and loading operations: a systematic literature review," Annals of Operations Research, Springer, vol. 273(1), pages 311-375, February.
    11. Araya, Ignacio & Moyano, Mauricio & Sanchez, Cristobal, 2020. "A beam search algorithm for the biobjective container loading problem," European Journal of Operational Research, Elsevier, vol. 286(2), pages 417-431.
    12. Bortfeldt, Andreas & Wäscher, Gerhard, 2013. "Constraints in container loading – A state-of-the-art review," European Journal of Operational Research, Elsevier, vol. 229(1), pages 1-20.
    13. Gajda, Mikele & Trivella, Alessio & Mansini, Renata & Pisinger, David, 2022. "An optimization approach for a complex real-life container loading problem," Omega, Elsevier, vol. 107(C).
    14. I. Gimenez-Palacios & M. T. Alonso & R. Alvarez-Valdes & F. Parreño, 2021. "Logistic constraints in container loading problems: the impact of complete shipment conditions," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 177-203, April.
    15. Sheng, Liu & Hongxia, Zhao & Xisong, Dong & Changjian, Cheng, 2016. "A heuristic algorithm for container loading of pallets with infill boxes," European Journal of Operational Research, Elsevier, vol. 252(3), pages 728-736.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bortfeldt, Andreas & Wäscher, Gerhard, 2013. "Constraints in container loading – A state-of-the-art review," European Journal of Operational Research, Elsevier, vol. 229(1), pages 1-20.
    2. F. Parreño & R. Alvarez-Valdes & J. M. Tamarit & J. F. Oliveira, 2008. "A Maximal-Space Algorithm for the Container Loading Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 412-422, August.
    3. Zhu, Wenbin & Lim, Andrew, 2012. "A new iterative-doubling Greedy–Lookahead algorithm for the single container loading problem," European Journal of Operational Research, Elsevier, vol. 222(3), pages 408-417.
    4. Sheng, Liu & Hongxia, Zhao & Xisong, Dong & Changjian, Cheng, 2016. "A heuristic algorithm for container loading of pallets with infill boxes," European Journal of Operational Research, Elsevier, vol. 252(3), pages 728-736.
    5. Huang, Wenqi & He, Kun, 2009. "A caving degree approach for the single container loading problem," European Journal of Operational Research, Elsevier, vol. 196(1), pages 93-101, July.
    6. Andreas Bortfeldt & Sabine Jungmann, 2012. "A tree search algorithm for solving the multi-dimensional strip packing problem with guillotine cutting constraint," Annals of Operations Research, Springer, vol. 196(1), pages 53-71, July.
    7. Araya, Ignacio & Moyano, Mauricio & Sanchez, Cristobal, 2020. "A beam search algorithm for the biobjective container loading problem," European Journal of Operational Research, Elsevier, vol. 286(2), pages 417-431.
    8. Umetani, Shunji & Murakami, Shohei, 2022. "Coordinate descent heuristics for the irregular strip packing problem of rasterized shapes," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1009-1026.
    9. Carlos A. Vega-Mejía & Jairo R. Montoya-Torres & Sardar M. N. Islam, 2019. "Consideration of triple bottom line objectives for sustainability in the optimization of vehicle routing and loading operations: a systematic literature review," Annals of Operations Research, Springer, vol. 273(1), pages 311-375, February.
    10. Wang, Ning & Lim, Andrew & Zhu, Wenbin, 2013. "A multi-round partial beam search approach for the single container loading problem with shipment priority," International Journal of Production Economics, Elsevier, vol. 145(2), pages 531-540.
    11. Gregory S. Taylor & Yupo Chan & Ghulam Rasool, 2017. "A three-dimensional bin-packing model: exact multicriteria solution and computational complexity," Annals of Operations Research, Springer, vol. 251(1), pages 397-427, April.
    12. Lim, Andrew & Ma, Hong & Qiu, Chaoyang & Zhu, Wenbin, 2013. "The single container loading problem with axle weight constraints," International Journal of Production Economics, Elsevier, vol. 144(1), pages 358-369.
    13. Tian, Tian & Zhu, Wenbin & Lim, Andrew & Wei, Lijun, 2016. "The multiple container loading problem with preference," European Journal of Operational Research, Elsevier, vol. 248(1), pages 84-94.
    14. J A Bennell & J F Oliveira, 2009. "A tutorial in irregular shape packing problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 93-105, May.
    15. Gzara, Fatma & Elhedhli, Samir & Yildiz, Burak C., 2020. "The Pallet Loading Problem: Three-dimensional bin packing with practical constraints," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1062-1074.
    16. Niblett, Matthew R. & Church, Richard L., 2015. "The disruptive anti-covering location problem," European Journal of Operational Research, Elsevier, vol. 247(3), pages 764-773.
    17. Cherri, Luiz H. & Mundim, Leandro R. & Andretta, Marina & Toledo, Franklina M.B. & Oliveira, José F. & Carravilla, Maria Antónia, 2016. "Robust mixed-integer linear programming models for the irregular strip packing problem," European Journal of Operational Research, Elsevier, vol. 253(3), pages 570-583.
    18. Bonet Filella, Guillem & Trivella, Alessio & Corman, Francesco, 2023. "Modeling soft unloading constraints in the multi-drop container loading problem," European Journal of Operational Research, Elsevier, vol. 308(1), pages 336-352.
    19. Felix Prause & Kai Hoppmann-Baum & Boris Defourny & Thorsten Koch, 2021. "The maximum diversity assortment selection problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 521-554, June.
    20. Sato, André Kubagawa & Martins, Thiago Castro & Gomes, Antonio Miguel & Tsuzuki, Marcos Sales Guerra, 2019. "Raster penetration map applied to the irregular packing problem," European Journal of Operational Research, Elsevier, vol. 279(2), pages 657-671.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:200:y:2010:i:3:p:881-892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.