IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v250y2016i1p30-45.html
   My bibliography  Save this article

A differential evolution algorithm with self-adaptive strategy and control parameters based on symmetric Latin hypercube design for unconstrained optimization problems

Author

Listed:
  • Zhao, Zhiwei
  • Yang, Jingming
  • Hu, Ziyu
  • Che, Haijun

Abstract

This paper presents a differential evolution (DE) algorithm, namely SLADE, with self-adaptive strategy and control parameters for unconstrained optimization problems. In SLADE, the population is initialized by symmetric Latin hypercube design (SLHD) to increase the diversity of the initial population. Moreover, the trial vector generation strategy assigned to each target individual is adaptively selected from the strategy candidate pool to match different stages of the evolution according to their previous successful experience. SLADE employs Cauchy distribution and normal distribution to update the control parameters CR and F to appropriate values during the evolutionary process. A large amount of simulation experiments and comparisons have been made by employing a set of 25 benchmark functions. Experimental results show that SLADE is better than, or at least comparable to, other classic or adaptive DE algorithms, and SLHD is effective for improving the performance of SLADE.

Suggested Citation

  • Zhao, Zhiwei & Yang, Jingming & Hu, Ziyu & Che, Haijun, 2016. "A differential evolution algorithm with self-adaptive strategy and control parameters based on symmetric Latin hypercube design for unconstrained optimization problems," European Journal of Operational Research, Elsevier, vol. 250(1), pages 30-45.
  • Handle: RePEc:eee:ejores:v:250:y:2016:i:1:p:30-45
    DOI: 10.1016/j.ejor.2015.10.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715009698
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.10.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mlakar, Miha & Petelin, Dejan & Tušar, Tea & Filipič, Bogdan, 2015. "GP-DEMO: Differential Evolution for Multiobjective Optimization based on Gaussian Process models," European Journal of Operational Research, Elsevier, vol. 243(2), pages 347-361.
    2. Gonçalves, José Fernando & Resende, Mauricio G.C., 2015. "A biased random-key genetic algorithm for the unequal area facility layout problem," European Journal of Operational Research, Elsevier, vol. 246(1), pages 86-107.
    3. Zhang, Jingqiao & Avasarala, Viswanath & Subbu, Raj, 2010. "Evolutionary optimization of transition probability matrices for credit decision-making," European Journal of Operational Research, Elsevier, vol. 200(2), pages 557-567, January.
    4. Di Maio, Francesco & Baronchelli, Samuele & Zio, Enrico, 2014. "Hierarchical differential evolution for minimal cut sets identification: Application to nuclear safety systems," European Journal of Operational Research, Elsevier, vol. 238(2), pages 645-652.
    5. Mahalec, Vladimir & Chen, Yingwu & Liu, Xiaolu & He, Renjie & Sun, Kai, 2015. "Reconfiguration of satellite orbit for cooperative observation using variable-size multi-objective differential evolutionAuthor-Name: Chen, Yingguo," European Journal of Operational Research, Elsevier, vol. 242(1), pages 10-20.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Qinqin & Yan, Xuefeng & Zhang, Yilian, 2018. "Auto-selection mechanism of differential evolution algorithm variants and its application," European Journal of Operational Research, Elsevier, vol. 270(2), pages 636-653.
    2. Chen, J.J. & Wu, Q.H. & Zhang, L.L. & Wu, P.Z., 2017. "Multi-objective mean–variance–skewness model for nonconvex and stochastic optimal power flow considering wind power and load uncertainties," European Journal of Operational Research, Elsevier, vol. 263(2), pages 719-732.
    3. Javier Cano & Cesar Alfaro & Javier Gomez & Abraham Duarte, 2022. "Out of the Niche: Using Direct Search Methods to Find Multiple Global Optima," Mathematics, MDPI, vol. 10(9), pages 1-20, April.
    4. Tsafarakis, Stelios & Zervoudakis, Konstantinos & Andronikidis, Andreas & Altsitsiadis, Efthymios, 2020. "Fuzzy self-tuning differential evolution for optimal product line design," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1161-1169.
    5. Guohua Fang & Yuxue Guo & Xin Wen & Xiaomin Fu & Xiaohui Lei & Yu Tian & Ting Wang, 2018. "Multi-Objective Differential Evolution-Chaos Shuffled Frog Leaping Algorithm for Water Resources System Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(12), pages 3835-3852, September.
    6. Ma, Xuemin & Yang, Jingming & Sun, Hao & Hu, Ziyu & Wei, Lixin, 2021. "Feature information prediction algorithm for dynamic multi-objective optimization problems," European Journal of Operational Research, Elsevier, vol. 295(3), pages 965-981.
    7. Gonggui Chen & Zhengmei Lu & Zhizhong Zhang, 2018. "Improved Krill Herd Algorithm with Novel Constraint Handling Method for Solving Optimal Power Flow Problems," Energies, MDPI, vol. 11(1), pages 1-27, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Derakhshan Asl & Kuan Yew Wong & Manoj Kumar Tiwari, 2016. "Unequal-area stochastic facility layout problems: solutions using improved covariance matrix adaptation evolution strategy, particle swarm optimisation, and genetic algorithm," International Journal of Production Research, Taylor & Francis Journals, vol. 54(3), pages 799-823, February.
    2. Mariem Besbes & Marc Zolghadri & Roberta Costa Affonso & Faouzi Masmoudi & Mohamed Haddar, 2020. "A methodology for solving facility layout problem considering barriers: genetic algorithm coupled with A* search," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 615-640, March.
    3. Cui, Yunfei & Geng, Zhiqiang & Zhu, Qunxiong & Han, Yongming, 2017. "Review: Multi-objective optimization methods and application in energy saving," Energy, Elsevier, vol. 125(C), pages 681-704.
    4. Jonatas B. C. Chagas & Julian Blank & Markus Wagner & Marcone J. F. Souza & Kalyanmoy Deb, 2021. "A non-dominated sorting based customized random-key genetic algorithm for the bi-objective traveling thief problem," Journal of Heuristics, Springer, vol. 27(3), pages 267-301, June.
    5. Anjos, Miguel F. & Vieira, Manuel V.C., 2017. "Mathematical optimization approaches for facility layout problems: The state-of-the-art and future research directions," European Journal of Operational Research, Elsevier, vol. 261(1), pages 1-16.
    6. Jerzy Grobelny & Rafal Michalski, 2017. "A novel version of simulated annealing based on linguistic patterns for solving facility layout problems," WORking papers in Management Science (WORMS) WORMS/17/07, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
    7. Borgonovo, E. & Cappelli, V. & Maccheroni, F. & Marinacci, M., 2018. "Risk analysis and decision theory: A bridge," European Journal of Operational Research, Elsevier, vol. 264(1), pages 280-293.
    8. Nourinejad, Mehdi & Bahrami, Sina & Roorda, Matthew J., 2018. "Designing parking facilities for autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 110-127.
    9. Piotrowski, Adam P. & Napiorkowski, Jaroslaw J. & Kiczko, Adam, 2012. "Differential Evolution algorithm with Separated Groups for multi-dimensional optimization problems," European Journal of Operational Research, Elsevier, vol. 216(1), pages 33-46.
    10. Ghorashi Khalilabadi, S. M. & Roy, D. & de Koster, M.B.M., 2022. "A Data-driven Approach to Enhance Worker Productivity by Optimizing Facility Layout," ERIM Report Series Research in Management ERS-2022-003-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    11. Feng, Yanling & Li, Guo & Sethi, Suresh P., 2018. "A three-layer chromosome genetic algorithm for multi-cell scheduling with flexible routes and machine sharing," International Journal of Production Economics, Elsevier, vol. 196(C), pages 269-283.
    12. Hira Zaheer & Millie Pant & Sushil Kumar & Oleg Monakhov & Emilia Monakhova & Kusum Deep, 2017. "A new guiding force strategy for differential evolution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(4), pages 2170-2183, December.
    13. Aaron B. Hoskins & Hugh R. Medal & Eghbal Rashidi, 2017. "Satellite constellation design for forest fire monitoring via a stochastic programing approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(8), pages 642-661, December.
    14. Lwin, Khin T. & Qu, Rong & MacCarthy, Bart L., 2017. "Mean-VaR portfolio optimization: A nonparametric approach," European Journal of Operational Research, Elsevier, vol. 260(2), pages 751-766.
    15. Gonçalves, José Fernando & Wäscher, Gerhard, 2020. "A MIP model and a biased random-key genetic algorithm based approach for a two-dimensional cutting problem with defects," European Journal of Operational Research, Elsevier, vol. 286(3), pages 867-882.
    16. Bernardo F. Almeida & Isabel Correia & Francisco Saldanha-da-Gama, 2018. "A biased random-key genetic algorithm for the project scheduling problem with flexible resources," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 283-308, July.
    17. Mancuso, A. & Compare, M. & Salo, A. & Zio, E., 2017. "Portfolio optimization of safety measures for reducing risks in nuclear systems," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 20-29.
    18. Di Maio, Francesco & Picoco, Claudia & Zio, Enrico & Rychkov, Valentin, 2017. "Safety margin sensitivity analysis for model selection in nuclear power plant probabilistic safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 122-138.
    19. Lützenkirchen, Kristina & Rösch, Daniel & Scheule, Harald, 2014. "Asset portfolio securitizations and cyclicality of regulatory capital," European Journal of Operational Research, Elsevier, vol. 237(1), pages 289-302.
    20. Yu, Shiwei & Zheng, Shuhong & Gao, Shiwei & Yang, Juan, 2017. "A multi-objective decision model for investment in energy savings and emission reductions in coal mining," European Journal of Operational Research, Elsevier, vol. 260(1), pages 335-347.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:250:y:2016:i:1:p:30-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.