IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i1p76-d124983.html
   My bibliography  Save this article

Improved Krill Herd Algorithm with Novel Constraint Handling Method for Solving Optimal Power Flow Problems

Author

Listed:
  • Gonggui Chen

    (Key Laboratory of Network Control & Intelligent Instrument, Chongqing University of Posts and Telecommunications, Ministry of Education, Chongqing 400065, China
    Research Center on Complex Power System Analysis and Control, Chongqing University of Posts and Telecommunications, Chongqing 400065, China)

  • Zhengmei Lu

    (Key Laboratory of Network Control & Intelligent Instrument, Chongqing University of Posts and Telecommunications, Ministry of Education, Chongqing 400065, China
    Research Center on Complex Power System Analysis and Control, Chongqing University of Posts and Telecommunications, Chongqing 400065, China)

  • Zhizhong Zhang

    (Key Laboratory of Communication Network and Testing Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China)

Abstract

As one of the most important tools used in operation and planning of power systems, the optimal power flow (OPF) problem considering the economy and security is large-scale, complex and hard to solve. In this paper, an improved krill herd algorithm (IKHA) has been proposed. In IKHA, the onlooker search mechanism is introduced to reduce the probability of falling into local optimum; and the parameter values of the proposed algorithm including inertia weight and step-length scale factor are varied according to the iteration of evolutionary process, which improves the exploration and exploitation capabilities. Moreover, a novel constraint handling method is proposed to guide the individual to the feasible space and ensure that the optimal solution satisfies the security constraints. Then, IKHA is combined with the novel constraint handling method to solve the multi-constrained OPF problem, and its performance is tested on the IEEE 30 bus, IEEE 57 bus and IEEE 118 bus systems for 10 different simulation cases containing linear and non-linear objective functions. The simulation results demonstrate that the proposed method can solve the OPF problem successfully and obtain better solutions compared with other methods reported in the recent literatures, which prove the feasibility and effectiveness of the improvements in this work.

Suggested Citation

  • Gonggui Chen & Zhengmei Lu & Zhizhong Zhang, 2018. "Improved Krill Herd Algorithm with Novel Constraint Handling Method for Solving Optimal Power Flow Problems," Energies, MDPI, vol. 11(1), pages 1-27, January.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:76-:d:124983
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/76/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/76/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Zhiwei & Yang, Jingming & Hu, Ziyu & Che, Haijun, 2016. "A differential evolution algorithm with self-adaptive strategy and control parameters based on symmetric Latin hypercube design for unconstrained optimization problems," European Journal of Operational Research, Elsevier, vol. 250(1), pages 30-45.
    2. Warid Warid & Hashim Hizam & Norman Mariun & Noor Izzri Abdul-Wahab, 2016. "Optimal Power Flow Using the Jaya Algorithm," Energies, MDPI, vol. 9(9), pages 1-18, August.
    3. Usama Khaled & Ali M. Eltamaly & Abderrahmane Beroual, 2017. "Optimal Power Flow Using Particle Swarm Optimization of Renewable Hybrid Distributed Generation," Energies, MDPI, vol. 10(7), pages 1-14, July.
    4. Eleonora Riva Sanseverino & Maria Luisa Di Silvestre & Romina Badalamenti & Ninh Quang Nguyen & Josep Maria Guerrero & Lexuan Meng, 2015. "Optimal Power Flow in Islanded Microgrids Using a Simple Distributed Algorithm," Energies, MDPI, vol. 8(10), pages 1-22, October.
    5. Diego Oliva & Ahmed A. Ewees & Mohamed Abd El Aziz & Aboul Ella Hassanien & Marco Peréz-Cisneros, 2017. "A Chaotic Improved Artificial Bee Colony for Parameter Estimation of Photovoltaic Cells," Energies, MDPI, vol. 10(7), pages 1-19, June.
    6. Niknam, Taher & Narimani, Mohammad rasoul & Jabbari, Masoud & Malekpour, Ahmad Reza, 2011. "A modified shuffle frog leaping algorithm for multi-objective optimal power flow," Energy, Elsevier, vol. 36(11), pages 6420-6432.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hojat Karami & Sayed Farhad Mousavi & Saeed Farzin & Mohammad Ehteram & Vijay P. Singh & Ozgur Kisi, 2018. "Improved Krill Algorithm for Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3353-3372, August.
    2. Thang Trung Nguyen & Bach Hoang Dinh & Nguyen Vu Quynh & Minh Quan Duong & Le Van Dai, 2018. "A Novel Algorithm for Optimal Operation of Hydrothermal Power Systems under Considering the Constraints in Transmission Networks," Energies, MDPI, vol. 11(1), pages 1-21, January.
    3. Hao Su & Qun Niu & Zhile Yang, 2023. "Optimal Power Flow Using Improved Cross-Entropy Method," Energies, MDPI, vol. 16(14), pages 1-33, July.
    4. Raheela Jamal & Baohui Men & Noor Habib Khan & Muhammad Asif Zahoor Raja, 2019. "Hybrid Bio-Inspired Computational Heuristic Paradigm for Integrated Load Dispatch Problems Involving Stochastic Wind," Energies, MDPI, vol. 12(13), pages 1-23, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed Hamouda Ali & Ali M. El-Rifaie & Ahmed A. F. Youssef & Vladimir N. Tulsky & Mohamed A. Tolba, 2023. "Techno-Economic Strategy for the Load Dispatch and Power Flow in Power Grids Using Peafowl Optimization Algorithm," Energies, MDPI, vol. 16(2), pages 1-29, January.
    2. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "Single and Multi-Objective Optimal Power Flow Based on Hunger Games Search with Pareto Concept Optimization," Energies, MDPI, vol. 15(22), pages 1-31, November.
    3. Gracita Batista Rosas & Elizete Maria Lourenço & Djalma Mosqueira Falcão & Thelma Solange Piazza Fernandes, 2019. "An Expeditious Methodology to Assess the Effects of Intermittent Generation on Power Systems," Energies, MDPI, vol. 12(6), pages 1-18, March.
    4. Ali S. Alghamdi, 2022. "Optimal Power Flow in Wind–Photovoltaic Energy Regulation Systems Using a Modified Turbulent Water Flow-Based Optimization," Sustainability, MDPI, vol. 14(24), pages 1-27, December.
    5. Abdullah Khan & Hashim Hizam & Noor Izzri Abdul-Wahab & Mohammad Lutfi Othman, 2020. "Solution of Optimal Power Flow Using Non-Dominated Sorting Multi Objective Based Hybrid Firefly and Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 13(16), pages 1-24, August.
    6. Saket Gupta & Narendra Kumar & Laxmi Srivastava & Hasmat Malik & Alberto Pliego Marugán & Fausto Pedro García Márquez, 2021. "A Hybrid Jaya–Powell’s Pattern Search Algorithm for Multi-Objective Optimal Power Flow Incorporating Distributed Generation," Energies, MDPI, vol. 14(10), pages 1-24, May.
    7. Thanh Long Duong & Ngoc Anh Nguyen & Thuan Thanh Nguyen, 2020. "A Newly Hybrid Method Based on Cuckoo Search and Sunflower Optimization for Optimal Power Flow Problem," Sustainability, MDPI, vol. 12(13), pages 1-19, June.
    8. Saket Gupta & Narendra Kumar & Laxmi Srivastava & Hasmat Malik & Amjad Anvari-Moghaddam & Fausto Pedro García Márquez, 2021. "A Robust Optimization Approach for Optimal Power Flow Solutions Using Rao Algorithms," Energies, MDPI, vol. 14(17), pages 1-28, September.
    9. Hatem Diab & Mahmoud Abdelsalam & Alaa Abdelbary, 2021. "A Multi-Objective Optimal Power Flow Control of Electrical Transmission Networks Using Intelligent Meta-Heuristic Optimization Techniques," Sustainability, MDPI, vol. 13(9), pages 1-25, April.
    10. Hao Su & Qun Niu & Zhile Yang, 2023. "Optimal Power Flow Using Improved Cross-Entropy Method," Energies, MDPI, vol. 16(14), pages 1-33, July.
    11. Zahir Sahli & Abdellatif Hamouda & Abdelghani Bekrar & Damien Trentesaux, 2018. "Reactive Power Dispatch Optimization with Voltage Profile Improvement Using an Efficient Hybrid Algorithm †," Energies, MDPI, vol. 11(8), pages 1-21, August.
    12. Gonggui Chen & Xingting Yi & Zhizhong Zhang & Hangtian Lei, 2018. "Solving the Multi-Objective Optimal Power Flow Problem Using the Multi-Objective Firefly Algorithm with a Constraints-Prior Pareto-Domination Approach," Energies, MDPI, vol. 11(12), pages 1-18, December.
    13. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Roosta, Alireza & Amiri, Babak, 2012. "A new multi-objective reserve constrained combined heat and power dynamic economic emission dispatch," Energy, Elsevier, vol. 42(1), pages 530-545.
    14. Reem Y. Abdelghany & Salah Kamel & Hamdy M. Sultan & Ahmed Khorasy & Salah K. Elsayed & Mahrous Ahmed, 2021. "Development of an Improved Bonobo Optimizer and Its Application for Solar Cell Parameter Estimation," Sustainability, MDPI, vol. 13(7), pages 1-22, March.
    15. Usama Khaled & Ali M. Eltamaly & Abderrahmane Beroual, 2017. "Optimal Power Flow Using Particle Swarm Optimization of Renewable Hybrid Distributed Generation," Energies, MDPI, vol. 10(7), pages 1-14, July.
    16. Mohammad Zohrul Islam & Noor Izzri Abdul Wahab & Veerapandiyan Veerasamy & Hashim Hizam & Nashiren Farzilah Mailah & Josep M. Guerrero & Mohamad Nasrun Mohd Nasir, 2020. "A Harris Hawks Optimization Based Single- and Multi-Objective Optimal Power Flow Considering Environmental Emission," Sustainability, MDPI, vol. 12(13), pages 1-25, June.
    17. Samson Ademola Adegoke & Yanxia Sun, 2023. "Diminishing Active Power Loss and Improving Voltage Profile Using an Improved Pathfinder Algorithm Based on Inertia Weight," Energies, MDPI, vol. 16(3), pages 1-14, January.
    18. Tong Kang & Jiangang Yao & Min Jin & Shengjie Yang & ThanhLong Duong, 2018. "A Novel Improved Cuckoo Search Algorithm for Parameter Estimation of Photovoltaic (PV) Models," Energies, MDPI, vol. 11(5), pages 1-31, April.
    19. Omaji Samuel & Nadeem Javaid & Mahmood Ashraf & Farruh Ishmanov & Muhammad Khalil Afzal & Zahoor Ali Khan, 2018. "Jaya based Optimization Method with High Dispatchable Distributed Generation for Residential Microgrid," Energies, MDPI, vol. 11(6), pages 1-29, June.
    20. Abdullah Khan & Hashim Hizam & Noor Izzri bin Abdul Wahab & Mohammad Lutfi Othman, 2020. "Optimal power flow using hybrid firefly and particle swarm optimization algorithm," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:76-:d:124983. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.