IDEAS home Printed from https://ideas.repec.org/p/ahh/wpaper/worms1707.html
   My bibliography  Save this paper

A novel version of simulated annealing based on linguistic patterns for solving facility layout problems

Author

Listed:
  • Jerzy Grobelny
  • Rafal Michalski

Abstract

The paper presents a novel version of the simulated annealing algorithm based on linguistic patterns (LP) and fuzzy theory approach. The article describes shortly the linguistic patterns and shows on a simple illustrative example the idea of using the Łukasiewicz formula as a criterion for the facility layout optimization. Next, the detailed description of our LP version of simulated annealing is presented. The influence of the proposed algorithm parameters on the effectiveness of our approach is then examined in a simulation experiment involving four different types of facility layout problems. The outcomes from the first experiments are used for optimally setting the parameters of our proposal in the second simulation study focused on verifying its effectiveness for objects with uniform and variable sizes. The obtained results show that the presented procedure, apart from producing decent results in terms of the classic goal function and the linguistic pattern criterion, provided solutions that were qualitatively different than those generated by a crisp version.

Suggested Citation

  • Jerzy Grobelny & Rafal Michalski, 2017. "A novel version of simulated annealing based on linguistic patterns for solving facility layout problems," WORking papers in Management Science (WORMS) WORMS/17/07, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
  • Handle: RePEc:ahh:wpaper:worms1707
    DOI: 10.1016/j.knosys.2017.03.001
    as

    Download full text from publisher

    File URL: https://worms.pwr.edu.pl/RePEc/ahh/wpaper/WORMS_17_07.pdf
    File Function: Final version, 2017
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.knosys.2017.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kusiak, Andrew & Heragu, Sunderesh S., 1987. "The facility layout problem," European Journal of Operational Research, Elsevier, vol. 29(3), pages 229-251, June.
    2. Robin Segerblom Liggett, 1981. "The Quadratic Assignment Problem: An Experimental Evaluation of Solution Strategies," Management Science, INFORMS, vol. 27(4), pages 442-458, April.
    3. Guan, Jian & Lin, Geng, 2016. "Hybridizing variable neighborhood search with ant colony optimization for solving the single row facility layout problem," European Journal of Operational Research, Elsevier, vol. 248(3), pages 899-909.
    4. Palubeckis, Gintaras, 2015. "Fast simulated annealing for single-row equidistant facility layout," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 287-301.
    5. Paes, Frederico Galaxe & Pessoa, Artur Alves & Vidal, Thibaut, 2017. "A hybrid genetic algorithm with decomposition phases for the Unequal Area Facility Layout Problem," European Journal of Operational Research, Elsevier, vol. 256(3), pages 742-756.
    6. Gonçalves, José Fernando & Resende, Mauricio G.C., 2015. "A biased random-key genetic algorithm for the unequal area facility layout problem," European Journal of Operational Research, Elsevier, vol. 246(1), pages 86-107.
    7. Loiola, Eliane Maria & de Abreu, Nair Maria Maia & Boaventura-Netto, Paulo Oswaldo & Hahn, Peter & Querido, Tania, 2007. "A survey for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 176(2), pages 657-690, January.
    8. Christopher E. Nugent & Thomas E. Vollmann & John Ruml, 1968. "An Experimental Comparison of Techniques for the Assignment of Facilities to Locations," Operations Research, INFORMS, vol. 16(1), pages 150-173, February.
    9. Matai, Rajesh, 2015. "Solving multi objective facility layout problem by modified simulated annealing," Applied Mathematics and Computation, Elsevier, vol. 261(C), pages 302-311.
    10. Anirban Kundu & Pranab K. Dan, 2012. "Metaheuristic in facility layout problems: current trend and future direction," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 10(2), pages 238-253.
    11. Heragu, Sunderesh S. & Alfa, Attahiru Sule, 1992. "Experimental analysis of simulated annealing based algorithms for the layout problem," European Journal of Operational Research, Elsevier, vol. 57(2), pages 190-202, March.
    12. Komarudin & Wong, Kuan Yew, 2010. "Applying Ant System for solving Unequal Area Facility Layout Problems," European Journal of Operational Research, Elsevier, vol. 202(3), pages 730-746, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Li & Yali Chen & Jinzhao Song & Ming Li & Yu Yu, 2023. "Multi-Objective Optimization Method of Industrial Workshop Layout from the Perspective of Low Carbon," Sustainability, MDPI, vol. 15(16), pages 1-23, August.
    2. Pablo Pérez-Gosende & Josefa Mula & Manuel Díaz-Madroñero, 2020. "Overview of Dynamic Facility Layout Planning as a Sustainability Strategy," Sustainability, MDPI, vol. 12(19), pages 1-16, October.
    3. Jerzy Grobelny & Rafal Michalski, 2018. "Simulated annealing based on linguistic patterns: experimental examination of properties for various types of logistic problems," WORking papers in Management Science (WORMS) WORMS/18/09, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariem Besbes & Marc Zolghadri & Roberta Costa Affonso & Faouzi Masmoudi & Mohamed Haddar, 2020. "A methodology for solving facility layout problem considering barriers: genetic algorithm coupled with A* search," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 615-640, March.
    2. Jerzy Grobelny & Rafał Michalski, 2020. "Effects of scatter plot initial solutions on regular grid facility layout algorithms in typical production models," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(2), pages 601-632, June.
    3. Kazuhiro Tsuchiya & Sunil Bharitkar & Yoshiyasu Takefuji, 1996. "A neural network approach to facility layout problems," European Journal of Operational Research, Elsevier, vol. 89(3), pages 556-563, March.
    4. Anjos, Miguel F. & Vieira, Manuel V.C., 2017. "Mathematical optimization approaches for facility layout problems: The state-of-the-art and future research directions," European Journal of Operational Research, Elsevier, vol. 261(1), pages 1-16.
    5. Ravi Kumar, K. & Hadjinicola, George C. & Lin, Ting-li, 1995. "A heuristic procedure for the single-row facility layout problem," European Journal of Operational Research, Elsevier, vol. 87(1), pages 65-73, November.
    6. Qiaoyu Zhang & Yan Lin, 2024. "Integrating multi-agent reinforcement learning and 3D A* search for facility layout problem considering connector-assembly," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3393-3418, October.
    7. Minhee Kim & Junjae Chae, 2019. "Monarch Butterfly Optimization for Facility Layout Design Based on a Single Loop Material Handling Path," Mathematics, MDPI, vol. 7(2), pages 1-21, February.
    8. Xie, Yue & Zhou, Shenghan & Xiao, Yiyong & Kulturel-Konak, Sadan & Konak, Abdullah, 2018. "A β-accurate linearization method of Euclidean distance for the facility layout problem with heterogeneous distance metrics," European Journal of Operational Research, Elsevier, vol. 265(1), pages 26-38.
    9. Lin, Jin-Ling & Foote, Bobbie & Pulat, Simin & Chang, Chir-Ho & Cheung, John Y., 1996. "Solving the failure-to-fit problem for plant layout: By changing department shapes and sizes," European Journal of Operational Research, Elsevier, vol. 89(1), pages 135-146, February.
    10. Ali Derakhshan Asl & Kuan Yew Wong & Manoj Kumar Tiwari, 2016. "Unequal-area stochastic facility layout problems: solutions using improved covariance matrix adaptation evolution strategy, particle swarm optimisation, and genetic algorithm," International Journal of Production Research, Taylor & Francis Journals, vol. 54(3), pages 799-823, February.
    11. A. R. S. Amaral, 2022. "A heuristic approach for the double row layout problem," Annals of Operations Research, Springer, vol. 316(2), pages 1-36, September.
    12. Zhongwei Zhang & Lihui Wu & Zhaoyun Wu & Wenqiang Zhang & Shun Jia & Tao Peng, 2022. "Energy-Saving Oriented Manufacturing Workshop Facility Layout: A Solution Approach Using Multi-Objective Particle Swarm Optimization," Sustainability, MDPI, vol. 14(5), pages 1-28, February.
    13. Bazargan-Lari, Massoud, 1999. "Layout designs in cellular manufacturing," European Journal of Operational Research, Elsevier, vol. 112(2), pages 258-272, January.
    14. Kim, J. -Y. & Kim, Y. -D., 1995. "Graph theoretic heuristics for unequal-sized facility layout problems," Omega, Elsevier, vol. 23(4), pages 391-401, August.
    15. André R. S. Amaral, 2008. "An Exact Approach to the One-Dimensional Facility Layout Problem," Operations Research, INFORMS, vol. 56(4), pages 1026-1033, August.
    16. Gonçalves, José Fernando & Resende, Mauricio G.C., 2015. "A biased random-key genetic algorithm for the unequal area facility layout problem," European Journal of Operational Research, Elsevier, vol. 246(1), pages 86-107.
    17. Miguel F. Anjos & Anthony Vannelli, 2008. "Computing Globally Optimal Solutions for Single-Row Layout Problems Using Semidefinite Programming and Cutting Planes," INFORMS Journal on Computing, INFORMS, vol. 20(4), pages 611-617, November.
    18. Stefan Helber & Daniel Böhme & Farid Oucherif & Svenja Lagershausen & Steffen Kasper, 2016. "A hierarchical facility layout planning approach for large and complex hospitals," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 5-29, June.
    19. Ignacio Castillo & Thaddeus Sim, 2004. "A spring-embedding approach for the facility layout problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(1), pages 73-81, January.
    20. Vadivel Sengazhani Murugesan & A. H. Sequeira & Deeksha Sanjay Shetty & Sunil Kumar Jauhar, 2020. "Enhancement of mail operational performance of India post facility layout using AHP," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 261-273, April.

    More about this item

    Keywords

    Facility layout problem; Linguistic patterns; Fuzzy sets; Simulated annealing; Optimization;
    All these keywords.

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • L16 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Industrial Organization and Macroeconomics; Macroeconomic Industrial Structure
    • L23 - Industrial Organization - - Firm Objectives, Organization, and Behavior - - - Organization of Production
    • L91 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Transportation: General
    • M11 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - Production Management

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ahh:wpaper:worms1707. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anna Kowalska-Pyzalska (email available below). General contact details of provider: https://edirc.repec.org/data/kbpwrpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.