IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v244y2015i2p662-673.html
   My bibliography  Save this article

Integration of RFID and business analytics for trade show exhibitors

Author

Listed:
  • Chongwatpol, Jongsawas

Abstract

Drastic changes in consumer markets over the last decades have increased the pressure and challenges for the trade exhibition industry. Exhibiting organizations demand higher levels of justification for involvement and expect returns on trade show investments. This study proposes an RFID-enabled track and traceability framework to improve information visibility at the trade site. The identification information can potentially create detailed, accurate, and complete visibility of attendees’ movements and purchasing behaviors and consequently lead to considerable analytical benefits. Leveraging the wealth of information made available by RFID is challenging; thus, the objective of this study is to outline how to incorporate RFID data into existing enterprise data to deliver analytical solutions to the trade show and exhibition industry. The results show that the exhibitor can use RFID to gather visitor intelligence and the key findings of this study provide valuable feedback to business analysts to promote follow-up marketing strategies.

Suggested Citation

  • Chongwatpol, Jongsawas, 2015. "Integration of RFID and business analytics for trade show exhibitors," European Journal of Operational Research, Elsevier, vol. 244(2), pages 662-673.
  • Handle: RePEc:eee:ejores:v:244:y:2015:i:2:p:662-673
    DOI: 10.1016/j.ejor.2015.01.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715000740
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.01.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chongwatpol, Jongsawas & Sharda, Ramesh, 2013. "RFID-enabled track and traceability in job-shop scheduling environment," European Journal of Operational Research, Elsevier, vol. 227(3), pages 453-463.
    2. Bose, Indranil & Chen, Xi, 2009. "Quantitative models for direct marketing: A review from systems perspective," European Journal of Operational Research, Elsevier, vol. 195(1), pages 1-16, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John A. Aloysius & Hartmut Hoehle & Soheil Goodarzi & Viswanath Venkatesh, 2018. "Big data initiatives in retail environments: Linking service process perceptions to shopping outcomes," Annals of Operations Research, Springer, vol. 270(1), pages 25-51, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muawia Ramadan & Bashir Salah & Mohammed Othman & Arsath Abbasali Ayubali, 2020. "Industry 4.0-Based Real-Time Scheduling and Dispatching in Lean Manufacturing Systems," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    2. Mercedes Esteban-Bravo & Jose M. Vidal-Sanz & Gökhan Yildirim, 2014. "Valuing Customer Portfolios with Endogenous Mass and Direct Marketing Interventions Using a Stochastic Dynamic Programming Decomposition," Marketing Science, INFORMS, vol. 33(5), pages 621-640, September.
    3. Todor Krastevich, 2013. "Using Predictive Modeling to Improve Direct Marketing Performance," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 3, pages 25-55.
    4. Noureddine Boustani & Ali Emrouznejad & Roya Gholami & Ozren Despic & Athina Ioannou, 2024. "Improving the predictive accuracy of the cross-selling of consumer loans using deep learning networks," Annals of Operations Research, Springer, vol. 339(1), pages 613-630, August.
    5. Zhong, Ray Y. & Huang, George Q. & Lan, Shulin & Dai, Q.Y. & Chen, Xu & Zhang, T., 2015. "A big data approach for logistics trajectory discovery from RFID-enabled production data," International Journal of Production Economics, Elsevier, vol. 165(C), pages 260-272.
    6. Soopramanien, Didier & Hong Juan, Liu, 2010. "The importance of understanding the exchange context when developing a decision support tool to target prospective customers of business insurance," Journal of Retailing and Consumer Services, Elsevier, vol. 17(4), pages 306-312.
    7. Guo, Z.X. & Ngai, E.W.T. & Yang, Can & Liang, Xuedong, 2015. "An RFID-based intelligent decision support system architecture for production monitoring and scheduling in a distributed manufacturing environment," International Journal of Production Economics, Elsevier, vol. 159(C), pages 16-28.
    8. Montecchi, Matteo & Plangger, Kirk & West, Douglas C., 2021. "Supply chain transparency: A bibliometric review and research agenda," International Journal of Production Economics, Elsevier, vol. 238(C).
    9. Lili Wang & Bin Hu & Yihang Feng & Yanting Duan & Wuyi Zhang, 2022. "Food supply network disruption and mitigation: an integrated perspective of traceability technology and network structure," Computational and Mathematical Organization Theory, Springer, vol. 28(4), pages 352-389, December.
    10. Geuens, Stijn & Coussement, Kristof & De Bock, Koen W., 2018. "A framework for configuring collaborative filtering-based recommendations derived from purchase data," European Journal of Operational Research, Elsevier, vol. 265(1), pages 208-218.
    11. Stefan Lessmann & Stefan Voß, 2010. "Customer-Centric Decision Support," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 2(2), pages 79-93, April.
    12. Coussement, Kristof & Buckinx, Wouter, 2011. "A probability-mapping algorithm for calibrating the posterior probabilities: A direct marketing application," European Journal of Operational Research, Elsevier, vol. 214(3), pages 732-738, November.
    13. Talla Nobibon, Fabrice & Leus, Roel & Spieksma, Frits C.R., 2011. "Optimization models for targeted offers in direct marketing: Exact and heuristic algorithms," European Journal of Operational Research, Elsevier, vol. 210(3), pages 670-683, May.
    14. Mariia I. Okuneva & Dmitriy B. Potapov, 2015. "The Effectiveness of Individual Targeting Through Smartphone Application in Retail: Evidence from Field Experiment," HSE Working papers WP BRP 47/MAN/2015, National Research University Higher School of Economics.
    15. Shokouhyar, Sajjad & Shokoohyar, Sina & Safari, Sepehr, 2020. "Research on the influence of after-sales service quality factors on customer satisfaction," Journal of Retailing and Consumer Services, Elsevier, vol. 56(C).
    16. Yingfeng Zhang & Dong Xi & Haidong Yang & Fei Tao & Zhe Wang, 2019. "Cloud manufacturing based service encapsulation and optimal configuration method for injection molding machine," Journal of Intelligent Manufacturing, Springer, vol. 30(7), pages 2681-2699, October.
    17. Niknamian, Sorush, 2019. "The Use of Customer value changing trends in business analysis," OSF Preprints mk38c, Center for Open Science.
    18. Schröder, Nadine & Hruschka, Harald, 2016. "Investigating the effects of mailing variables and endogeneity on mailing decisions," European Journal of Operational Research, Elsevier, vol. 250(2), pages 579-589.
    19. Katerina Shapoval & Thomas Setzer, 2018. "Next-Purchase Prediction Using Projections of Discounted Purchasing Sequences," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 60(2), pages 151-166, April.
    20. Lessmann, Stefan & Voß, Stefan, 2009. "A reference model for customer-centric data mining with support vector machines," European Journal of Operational Research, Elsevier, vol. 199(2), pages 520-530, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:244:y:2015:i:2:p:662-673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.