IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v328y2023i2d10.1007_s10479-023-05325-2.html
   My bibliography  Save this article

A matheuristic for customized multi-level multi-criteria university timetabling

Author

Listed:
  • Fabian Dunke

    (Karlsruhe Institute of Technology)

  • Stefan Nickel

    (Karlsruhe Institute of Technology)

Abstract

Course timetables are the organizational foundation of a university’s educational program. While students and lecturers perceive timetable quality individually according to their preferences, there are also collective criteria derived normatively such as balanced workloads or idle time avoidance. A recent challenge and opportunity in curriculum-based timetabling consists of customizing timetables with respect to individual student preferences and with respect to integrating online courses as part of modern course programs or in reaction to flexibility requirements as posed in pandemic situations. Curricula consisting of (large) lectures and (small) tutorials further open the possibility for optimizing not only the lecture and tutorial plan for all students but also the assignments of individual students to tutorial slots. In this paper, we develop a multi-level planning process for university timetabling: On the tactical level, a lecture and tutorial plan is determined for a set of study programs; on the operational level, individual timetables are generated for each student interlacing the lecture plan through a selection of tutorials from the tutorial plan favoring individual preferences. We utilize this mathematical-programming-based planning process as part of a matheuristic which implements a genetic algorithm in order to improve lecture plans, tutorial plans, and individual timetables so as to find an overall university program with well-balanced timetable performance criteria. Since the evaluation of the fitness function amounts to invoking the entire planning process, we additionally provide a proxy in the form of an artificial neural network metamodel. Computational results exhibit the procedure’s capability of generating high quality schedules.

Suggested Citation

  • Fabian Dunke & Stefan Nickel, 2023. "A matheuristic for customized multi-level multi-criteria university timetabling," Annals of Operations Research, Springer, vol. 328(2), pages 1313-1348, September.
  • Handle: RePEc:spr:annopr:v:328:y:2023:i:2:d:10.1007_s10479-023-05325-2
    DOI: 10.1007/s10479-023-05325-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05325-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05325-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Werra, D., 1985. "An introduction to timetabling," European Journal of Operational Research, Elsevier, vol. 19(2), pages 151-162, February.
    2. Nelishia Pillay, 2016. "A review of hyper-heuristics for educational timetabling," Annals of Operations Research, Springer, vol. 239(1), pages 3-38, April.
    3. Burke, Edmund Kieran & Petrovic, Sanja, 2002. "Recent research directions in automated timetabling," European Journal of Operational Research, Elsevier, vol. 140(2), pages 266-280, July.
    4. Goh, Say Leng & Kendall, Graham & Sabar, Nasser R., 2017. "Improved local search approaches to solve the post enrolment course timetabling problem," European Journal of Operational Research, Elsevier, vol. 261(1), pages 17-29.
    5. Alexandre Lemos & Pedro T. Monteiro & Inês Lynce, 2022. "Introducing UniCorT: an iterative university course timetabling tool with MaxSAT," Journal of Scheduling, Springer, vol. 25(4), pages 371-390, August.
    6. De Causmaecker, Patrick & Demeester, Peter & Vanden Berghe, Greet, 2009. "A decomposed metaheuristic approach for a real-world university timetabling problem," European Journal of Operational Research, Elsevier, vol. 195(1), pages 307-318, May.
    7. Clemens Nothegger & Alfred Mayer & Andreas Chwatal & Günther Raidl, 2012. "Solving the post enrolment course timetabling problem by ant colony optimization," Annals of Operations Research, Springer, vol. 194(1), pages 325-339, April.
    8. Pongcharoen, P. & Promtet, W. & Yenradee, P. & Hicks, C., 2008. "Stochastic Optimisation Timetabling Tool for university course scheduling," International Journal of Production Economics, Elsevier, vol. 112(2), pages 903-918, April.
    9. Ghaith Jaradat & Masri Ayob & Zulkifli Ahmad, 2014. "On the performance of Scatter Search for post-enrolment course timetabling problems," Journal of Combinatorial Optimization, Springer, vol. 27(3), pages 417-439, April.
    10. Hadrien Cambazard & Emmanuel Hebrard & Barry O’Sullivan & Alexandre Papadopoulos, 2012. "Local search and constraint programming for the post enrolment-based course timetabling problem," Annals of Operations Research, Springer, vol. 194(1), pages 111-135, April.
    11. Say Leng Goh & Graham Kendall & Nasser R. Sabar, 2019. "Simulated annealing with improved reheating and learning for the post enrolment course timetabling problem," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(6), pages 873-888, June.
    12. Barry McCollum & Andrea Schaerf & Ben Paechter & Paul McMullan & Rhyd Lewis & Andrew J. Parkes & Luca Di Gaspero & Rong Qu & Edmund K. Burke, 2010. "Setting the Research Agenda in Automated Timetabling: The Second International Timetabling Competition," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 120-130, February.
    13. Andrea Bettinelli & Valentina Cacchiani & Roberto Roberti & Paolo Toth, 2015. "An overview of curriculum-based course timetabling," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 313-349, July.
    14. Can Akkan & Ayla Gülcü & Zeki Kuş, 2022. "Bi-criteria simulated annealing for the curriculum-based course timetabling problem with robustness approximation," Journal of Scheduling, Springer, vol. 25(4), pages 477-501, August.
    15. Lü, Zhipeng & Hao, Jin-Kao, 2010. "Adaptive Tabu Search for course timetabling," European Journal of Operational Research, Elsevier, vol. 200(1), pages 235-244, January.
    16. Fang-Jye Shiue & Meng-Cong Zheng & Hsin-Yun Lee & Akhmad F.K. Khitam & Pei-Ying Li, 2019. "Renovation Construction Process Scheduling for Long-Term Performance of Buildings: An Application Case of University Campus," Sustainability, MDPI, vol. 11(19), pages 1-19, October.
    17. Gerald Lach & Marco Lübbecke, 2012. "Curriculum based course timetabling: new solutions to Udine benchmark instances," Annals of Operations Research, Springer, vol. 194(1), pages 255-272, April.
    18. Andrea Bettinelli & Valentina Cacchiani & Roberto Roberti & Paolo Toth, 2015. "Rejoinder on: an overview of curriculum-based course timetabling," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 366-368, July.
    19. Rhyd Lewis, 2012. "A time-dependent metaheuristic algorithm for post enrolment-based course timetabling," Annals of Operations Research, Springer, vol. 194(1), pages 273-289, April.
    20. J. Broek & C. Hurkens, 2012. "An IP-based heuristic for the post enrolment course timetabling problem of the ITC2007," Annals of Operations Research, Springer, vol. 194(1), pages 439-454, April.
    21. Say Leng Goh & Graham Kendall & Nasser R. Sabar & Salwani Abdullah, 2020. "An effective hybrid local search approach for the post enrolment course timetabling problem," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1131-1163, December.
    22. Daskalaki, S. & Birbas, T. & Housos, E., 2004. "An integer programming formulation for a case study in university timetabling," European Journal of Operational Research, Elsevier, vol. 153(1), pages 117-135, February.
    23. Efstratios Rappos & Eric Thiémard & Stephan Robert & Jean-François Hêche, 2022. "A mixed-integer programming approach for solving university course timetabling problems," Journal of Scheduling, Springer, vol. 25(4), pages 391-404, August.
    24. Daskalaki, S. & Birbas, T., 2005. "Efficient solutions for a university timetabling problem through integer programming," European Journal of Operational Research, Elsevier, vol. 160(1), pages 106-120, January.
    25. Tomáš Müller & Keith Murray, 2010. "Comprehensive approach to student sectioning," Annals of Operations Research, Springer, vol. 181(1), pages 249-269, December.
    26. Rasmus Ø. Mikkelsen & Dennis S. Holm, 2022. "A parallelized matheuristic for the International Timetabling Competition 2019," Journal of Scheduling, Springer, vol. 25(4), pages 429-452, August.
    27. R. Alan Bowman, 2021. "Developing Optimal Student Plans of Study," Interfaces, INFORMS, vol. 51(6), pages 409-421, November.
    28. Dennis S. Holm & Rasmus Ø. Mikkelsen & Matias Sørensen & Thomas J. R. Stidsen, 2022. "A graph-based MIP formulation of the International Timetabling Competition 2019," Journal of Scheduling, Springer, vol. 25(4), pages 405-428, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ceschia, Sara & Di Gaspero, Luca & Schaerf, Andrea, 2023. "Educational timetabling: Problems, benchmarks, and state-of-the-art results," European Journal of Operational Research, Elsevier, vol. 308(1), pages 1-18.
    2. Andrea Bettinelli & Valentina Cacchiani & Roberto Roberti & Paolo Toth, 2015. "An overview of curriculum-based course timetabling," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 313-349, July.
    3. Mutsunori Banbara & Katsumi Inoue & Benjamin Kaufmann & Tenda Okimoto & Torsten Schaub & Takehide Soh & Naoyuki Tamura & Philipp Wanko, 2019. "$${\varvec{teaspoon}}$$ teaspoon : solving the curriculum-based course timetabling problems with answer set programming," Annals of Operations Research, Springer, vol. 275(1), pages 3-37, April.
    4. Lewis, R. & Thompson, J., 2015. "Analysing the effects of solution space connectivity with an effective metaheuristic for the course timetabling problem," European Journal of Operational Research, Elsevier, vol. 240(3), pages 637-648.
    5. P. Solano Cutillas & D. Pérez-Perales & M. M. E. Alemany Díaz, 2022. "A mathematical programming tool for an efficient decision-making on teaching assignment under non-regular time schedules," Operational Research, Springer, vol. 22(3), pages 2899-2942, July.
    6. Alexander Kiefer & Richard F. Hartl & Alexander Schnell, 2017. "Adaptive large neighborhood search for the curriculum-based course timetabling problem," Annals of Operations Research, Springer, vol. 252(2), pages 255-282, May.
    7. Esmaeilbeigi, Rasul & Mak-Hau, Vicky & Yearwood, John & Nguyen, Vivian, 2022. "The multiphase course timetabling problem," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1098-1119.
    8. Vermuyten, Hendrik & Lemmens, Stef & Marques, Inês & Beliën, Jeroen, 2016. "Developing compact course timetables with optimized student flows," European Journal of Operational Research, Elsevier, vol. 251(2), pages 651-661.
    9. Alejandro Cataldo & Juan-Carlos Ferrer & Jaime Miranda & Pablo A. Rey & Antoine Sauré, 2017. "An integer programming approach to curriculum-based examination timetabling," Annals of Operations Research, Springer, vol. 258(2), pages 369-393, November.
    10. Thepphakorn, Thatchai & Pongcharoen, Pupong & Hicks, Chris, 2014. "An ant colony based timetabling tool," International Journal of Production Economics, Elsevier, vol. 149(C), pages 131-144.
    11. Kadri Sylejmani & Edon Gashi & Adrian Ymeri, 2023. "Simulated annealing with penalization for university course timetabling," Journal of Scheduling, Springer, vol. 26(5), pages 497-517, October.
    12. Sunil B. Bhoi & Jayesh M. Dhodiya, 2024. "Multi-objective faculty course assignment problem based on the double parametric form of fuzzy preferences," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 34(2), pages 1-16.
    13. Massimiliano Caramia & Stefano Giordani, 2020. "Curriculum-Based Course Timetabling with Student Flow, Soft Constraints, and Smoothing Objectives: an Application to a Real Case Study," SN Operations Research Forum, Springer, vol. 1(2), pages 1-21, June.
    14. Say Leng Goh & Graham Kendall & Nasser R. Sabar & Salwani Abdullah, 2020. "An effective hybrid local search approach for the post enrolment course timetabling problem," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1131-1163, December.
    15. Jaime Miranda, 2010. "eClasSkeduler: A Course Scheduling System for the Executive Education Unit at the Universidad de Chile," Interfaces, INFORMS, vol. 40(3), pages 196-207, June.
    16. Niels-Christian F. Bagger & Simon Kristiansen & Matias Sørensen & Thomas R. Stidsen, 2019. "Flow formulations for curriculum-based course timetabling," Annals of Operations Research, Springer, vol. 280(1), pages 121-150, September.
    17. Bagger, Niels-Christian F. & Sørensen, Matias & Stidsen, Thomas R., 2019. "Dantzig–Wolfe decomposition of the daily course pattern formulation for curriculum-based course timetabling," European Journal of Operational Research, Elsevier, vol. 272(2), pages 430-446.
    18. Biniyam Asmare Kassa, 2015. "Implementing a Class-Scheduling System at the College of Business and Economics of Bahir Dar University, Ethiopia," Interfaces, INFORMS, vol. 45(3), pages 203-215, June.
    19. Rasmus Ø. Mikkelsen & Dennis S. Holm, 2022. "A parallelized matheuristic for the International Timetabling Competition 2019," Journal of Scheduling, Springer, vol. 25(4), pages 429-452, August.
    20. Niels-Christian Fink Bagger & Guy Desaulniers & Jacques Desrosiers, 2019. "Daily course pattern formulation and valid inequalities for the curriculum-based course timetabling problem," Journal of Scheduling, Springer, vol. 22(2), pages 155-172, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:328:y:2023:i:2:d:10.1007_s10479-023-05325-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.