IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v216y2012i3p533-543.html
   My bibliography  Save this article

A honey-bee mating optimization algorithm for educational timetabling problems

Author

Listed:
  • Sabar, Nasser R.
  • Ayob, Masri
  • Kendall, Graham
  • Qu, Rong

Abstract

In this work, we propose a variant of the honey-bee mating optimization algorithm for solving educational timetabling problems. The honey-bee algorithm is a nature inspired algorithm which simulates the process of real honey-bees mating. The performance of the proposed algorithm is tested over two benchmark problems; exam (Carter’s un-capacitated datasets) and course (Socha datasets) timetabling problems. We chose these two datasets as they have been widely studied in the literature and we would also like to evaluate our algorithm across two different, yet related, domains. Results demonstrate that the performance of the honey-bee mating optimization algorithm is comparable with the results of other approaches in the scientific literature. Indeed, the proposed approach obtains best results compared with other approaches on some instances, indicating that the honey-bee mating optimization algorithm is a promising approach in solving educational timetabling problems.

Suggested Citation

  • Sabar, Nasser R. & Ayob, Masri & Kendall, Graham & Qu, Rong, 2012. "A honey-bee mating optimization algorithm for educational timetabling problems," European Journal of Operational Research, Elsevier, vol. 216(3), pages 533-543.
  • Handle: RePEc:eee:ejores:v:216:y:2012:i:3:p:533-543
    DOI: 10.1016/j.ejor.2011.08.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221711007181
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2011.08.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Burke, Edmund Kieran & Petrovic, Sanja, 2002. "Recent research directions in automated timetabling," European Journal of Operational Research, Elsevier, vol. 140(2), pages 266-280, July.
    2. Barry McCollum & Andrea Schaerf & Ben Paechter & Paul McMullan & Rhyd Lewis & Andrew J. Parkes & Luca Di Gaspero & Rong Qu & Edmund K. Burke, 2010. "Setting the Research Agenda in Automated Timetabling: The Second International Timetabling Competition," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 120-130, February.
    3. Burke, E.K. & Eckersley, A.J. & McCollum, B. & Petrovic, S. & Qu, R., 2010. "Hybrid variable neighbourhood approaches to university exam timetabling," European Journal of Operational Research, Elsevier, vol. 206(1), pages 46-53, October.
    4. Burke, Edmund K. & McCollum, Barry & Meisels, Amnon & Petrovic, Sanja & Qu, Rong, 2007. "A graph-based hyper-heuristic for educational timetabling problems," European Journal of Operational Research, Elsevier, vol. 176(1), pages 177-192, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sabar, Nasser R. & Kendall, Graham, 2015. "An iterated local search with multiple perturbation operators and time varying perturbation strength for the aircraft landing problem," Omega, Elsevier, vol. 56(C), pages 88-98.
    2. Lan Nguyen-Ngoc & Quyet Nguyen-Huu & Guido De Roeck & Thanh Bui-Tien & Magd Abdel-Wahab, 2024. "Deep Neural Network and Evolved Optimization Algorithm for Damage Assessment in a Truss Bridge," Mathematics, MDPI, vol. 12(15), pages 1-25, July.
    3. Janmenjoy Nayak & Bighnaraj Naik, 2018. "A Novel Honey-Bees Mating Optimization Approach with Higher order Neural Network for Classification," Journal of Classification, Springer;The Classification Society, vol. 35(3), pages 511-548, October.
    4. Song, Kwonsik & Kim, Sooyoung & Park, Moonseo & Lee, Hyun-Soo, 2017. "Energy efficiency-based course timetabling for university buildings," Energy, Elsevier, vol. 139(C), pages 394-405.
    5. Say Leng Goh & Graham Kendall & Nasser R. Sabar & Salwani Abdullah, 2020. "An effective hybrid local search approach for the post enrolment course timetabling problem," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1131-1163, December.
    6. Goh, Say Leng & Kendall, Graham & Sabar, Nasser R., 2017. "Improved local search approaches to solve the post enrolment course timetabling problem," European Journal of Operational Research, Elsevier, vol. 261(1), pages 17-29.
    7. De Boeck, Liesje & Beliën, Jeroen & Creemers, Stefan, 2016. "A column generation approach for solving the examination-timetabling problemAuthor-Name: Woumans, Gert," European Journal of Operational Research, Elsevier, vol. 253(1), pages 178-194.
    8. Alejandro Cataldo & Juan-Carlos Ferrer & Jaime Miranda & Pablo A. Rey & Antoine Sauré, 2017. "An integer programming approach to curriculum-based examination timetabling," Annals of Operations Research, Springer, vol. 258(2), pages 369-393, November.
    9. Khaled Alomari & Osama Almarashdi & Ala Marashdh & Belal Zaqaibeh, 2020. "A New Optimization on Harmony Search Algorithm for Exam Timetabling System," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 19(01), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edmund K. Burke & Yuri Bykov, 2016. "An Adaptive Flex-Deluge Approach to University Exam Timetabling," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 781-794, November.
    2. Mohammed Al-Betar & Ahamad Khader & Iyad Doush, 2014. "Memetic techniques for examination timetabling," Annals of Operations Research, Springer, vol. 218(1), pages 23-50, July.
    3. R. A. Oude Vrielink & E. A. Jansen & E. W. Hans & J. Hillegersberg, 2019. "Practices in timetabling in higher education institutions: a systematic review," Annals of Operations Research, Springer, vol. 275(1), pages 145-160, April.
    4. Barry McCollum & Paul McMullan & Andrew Parkes & Edmund Burke & Rong Qu, 2012. "A new model for automated examination timetabling," Annals of Operations Research, Springer, vol. 194(1), pages 291-315, April.
    5. Moritz Mühlenthaler & Rolf Wanka, 2016. "Fairness in academic course timetabling," Annals of Operations Research, Springer, vol. 239(1), pages 171-188, April.
    6. Turabieh, Hamza & Abdullah, Salwani, 2011. "An integrated hybrid approach to the examination timetabling problem," Omega, Elsevier, vol. 39(6), pages 598-607, December.
    7. Kahar, M.N.M. & Kendall, G., 2010. "The examination timetabling problem at Universiti Malaysia Pahang: Comparison of a constructive heuristic with an existing software solution," European Journal of Operational Research, Elsevier, vol. 207(2), pages 557-565, December.
    8. Johnes, Jill, 2015. "Operational Research in education," European Journal of Operational Research, Elsevier, vol. 243(3), pages 683-696.
    9. De Boeck, Liesje & Beliën, Jeroen & Creemers, Stefan, 2016. "A column generation approach for solving the examination-timetabling problemAuthor-Name: Woumans, Gert," European Journal of Operational Research, Elsevier, vol. 253(1), pages 178-194.
    10. Edmund Burke & Rong Qu & Amr Soghier, 2014. "Adaptive selection of heuristics for improving exam timetables," Annals of Operations Research, Springer, vol. 218(1), pages 129-145, July.
    11. Edmund Burke & Graham Kendall & Mustafa Mısır & Ender Özcan, 2012. "Monte Carlo hyper-heuristics for examination timetabling," Annals of Operations Research, Springer, vol. 196(1), pages 73-90, July.
    12. Soria-Alcaraz, Jorge A. & Ochoa, Gabriela & Swan, Jerry & Carpio, Martin & Puga, Hector & Burke, Edmund K., 2014. "Effective learning hyper-heuristics for the course timetabling problem," European Journal of Operational Research, Elsevier, vol. 238(1), pages 77-86.
    13. Yuri Bykov & Sanja Petrovic, 2016. "A Step Counting Hill Climbing Algorithm applied to University Examination Timetabling," Journal of Scheduling, Springer, vol. 19(4), pages 479-492, August.
    14. Song, Kwonsik & Kim, Sooyoung & Park, Moonseo & Lee, Hyun-Soo, 2017. "Energy efficiency-based course timetabling for university buildings," Energy, Elsevier, vol. 139(C), pages 394-405.
    15. De Causmaecker, Patrick & Demeester, Peter & Vanden Berghe, Greet, 2009. "A decomposed metaheuristic approach for a real-world university timetabling problem," European Journal of Operational Research, Elsevier, vol. 195(1), pages 307-318, May.
    16. R Qu & E K Burke, 2009. "Hybridizations within a graph-based hyper-heuristic framework for university timetabling problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(9), pages 1273-1285, September.
    17. Pillay, N. & Banzhaf, W., 2009. "A study of heuristic combinations for hyper-heuristic systems for the uncapacitated examination timetabling problem," European Journal of Operational Research, Elsevier, vol. 197(2), pages 482-491, September.
    18. Mutsunori Banbara & Katsumi Inoue & Benjamin Kaufmann & Tenda Okimoto & Torsten Schaub & Takehide Soh & Naoyuki Tamura & Philipp Wanko, 2019. "$${\varvec{teaspoon}}$$ teaspoon : solving the curriculum-based course timetabling problems with answer set programming," Annals of Operations Research, Springer, vol. 275(1), pages 3-37, April.
    19. Zhang, Defu & Liu, Yongkai & M'Hallah, Rym & Leung, Stephen C.H., 2010. "A simulated annealing with a new neighborhood structure based algorithm for high school timetabling problems," European Journal of Operational Research, Elsevier, vol. 203(3), pages 550-558, June.
    20. Andrea Bettinelli & Valentina Cacchiani & Roberto Roberti & Paolo Toth, 2015. "An overview of curriculum-based course timetabling," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 313-349, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:216:y:2012:i:3:p:533-543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.