IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v176y2018i1d10.1007_s10957-017-1204-2.html
   My bibliography  Save this article

Exactness Property of the Exact Absolute Value Penalty Function Method for Solving Convex Nondifferentiable Interval-Valued Optimization Problems

Author

Listed:
  • T. Antczak

    (University of Łódź)

Abstract

In the paper, the classical exact absolute value function method is used for solving a nondifferentiable constrained interval-valued optimization problem with both inequality and equality constraints. The property of exactness of the penalization for the exact absolute value penalty function method is analyzed under assumption that the functions constituting the considered nondifferentiable constrained optimization problem with the interval-valued objective function are convex. The conditions guaranteeing the equivalence of the sets of LU-optimal solutions for the original constrained interval-valued extremum problem and for its associated penalized optimization problem with the interval-valued exact absolute value penalty function are given.

Suggested Citation

  • T. Antczak, 2018. "Exactness Property of the Exact Absolute Value Penalty Function Method for Solving Convex Nondifferentiable Interval-Valued Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 205-224, January.
  • Handle: RePEc:spr:joptap:v:176:y:2018:i:1:d:10.1007_s10957-017-1204-2
    DOI: 10.1007/s10957-017-1204-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-017-1204-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-017-1204-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ishibuchi, Hisao & Tanaka, Hideo, 1990. "Multiobjective programming in optimization of the interval objective function," European Journal of Operational Research, Elsevier, vol. 48(2), pages 219-225, September.
    2. H. C. Wu, 2008. "Wolfe Duality for Interval-Valued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 138(3), pages 497-509, September.
    3. Mongeau, Marcel & Sartenaer, Annick, 1995. "Automatic decrease of the penalty parameter in exact penalty function methods," European Journal of Operational Research, Elsevier, vol. 83(3), pages 686-699, June.
    4. Wu, Hsien-Chung, 2007. "The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function," European Journal of Operational Research, Elsevier, vol. 176(1), pages 46-59, January.
    5. Jiang, C. & Han, X. & Liu, G.R. & Liu, G.P., 2008. "A nonlinear interval number programming method for uncertain optimization problems," European Journal of Operational Research, Elsevier, vol. 188(1), pages 1-13, July.
    6. Hsien-Chung Wu, 2007. "The Karush-Kuhn-Tucker optimality conditions for the optimization problem with fuzzy-valued objective function," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(2), pages 203-224, October.
    7. Willard I. Zangwill, 1967. "Non-Linear Programming Via Penalty Functions," Management Science, INFORMS, vol. 13(5), pages 344-358, January.
    8. Antczak, Tadeusz, 2009. "Exact penalty functions method for mathematical programming problems involving invex functions," European Journal of Operational Research, Elsevier, vol. 198(1), pages 29-36, October.
    9. Chanas, Stefan & Kuchta, Dorota, 1996. "Multiobjective programming in optimization of interval objective functions -- A generalized approach," European Journal of Operational Research, Elsevier, vol. 94(3), pages 594-598, November.
    10. Ralph E. Steuer, 1981. "Algorithms for Linear Programming Problems with Interval Objective Function Coefficients," Mathematics of Operations Research, INFORMS, vol. 6(3), pages 333-348, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Hsien-Chung, 2009. "The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions," European Journal of Operational Research, Elsevier, vol. 196(1), pages 49-60, July.
    2. Yating Guo & Guoju Ye & Wei Liu & Dafang Zhao & Savin Treanţǎ, 2021. "Optimality Conditions and Duality for a Class of Generalized Convex Interval-Valued Optimization Problems," Mathematics, MDPI, vol. 9(22), pages 1-14, November.
    3. Lifeng Li, 2023. "Optimality conditions for nonlinear optimization problems with interval-valued objective function in admissible orders," Fuzzy Optimization and Decision Making, Springer, vol. 22(2), pages 247-265, June.
    4. Guo, Yating & Ye, Guoju & Liu, Wei & Zhao, Dafang & Treanţă, Savin, 2022. "On symmetric gH-derivative: Applications to dual interval-valued optimization problems," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    5. Fabiola Roxana Villanueva & Valeriano Antunes Oliveira, 2022. "Necessary Optimality Conditions for Interval Optimization Problems with Functional and Abstract Constraints," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 896-923, September.
    6. Mrinal Jana & Geetanjali Panda, 2018. "$$\chi$$ χ -Optimal solution of single objective nonlinear optimization problem with uncertain parameters," OPSEARCH, Springer;Operational Research Society of India, vol. 55(1), pages 165-186, March.
    7. R. Osuna-Gómez & B. Hernández-Jiménez & Y. Chalco-Cano & G. Ruiz-Garzón, 2018. "Different optimum notions for fuzzy functions and optimality conditions associated," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 177-193, June.
    8. Rekha R. Jaichander & Izhar Ahmad & Krishna Kummari & Suliman Al-Homidan, 2022. "Robust Nonsmooth Interval-Valued Optimization Problems Involving Uncertainty Constraints," Mathematics, MDPI, vol. 10(11), pages 1-19, May.
    9. Md Sadikur Rahman & Ali Akbar Shaikh & Irfan Ali & Asoke Kumar Bhunia & Armin Fügenschuh, 2021. "A Theoretical Framework for Optimality Conditions of Nonlinear Type-2 Interval-Valued Unconstrained and Constrained Optimization Problems Using Type-2 Interval Order Relations," Mathematics, MDPI, vol. 9(8), pages 1-22, April.
    10. Abhijit Baidya & Uttam Kumar Bera & Manoranjan Maiti, 2016. "The grey linear programming approach and its application to multi-objective multi-stage solid transportation problem," OPSEARCH, Springer;Operational Research Society of India, vol. 53(3), pages 500-522, September.
    11. Oliveira, Carla & Antunes, Carlos Henggeler, 2007. "Multiple objective linear programming models with interval coefficients - an illustrated overview," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1434-1463, September.
    12. Jiang, C. & Zhang, Z.G. & Zhang, Q.F. & Han, X. & Xie, H.C. & Liu, J., 2014. "A new nonlinear interval programming method for uncertain problems with dependent interval variables," European Journal of Operational Research, Elsevier, vol. 238(1), pages 245-253.
    13. Majumdar, J. & Bhunia, A.K., 2007. "Elitist genetic algorithm for assignment problem with imprecise goal," European Journal of Operational Research, Elsevier, vol. 177(2), pages 684-692, March.
    14. A. Rufián-Lizana & Y. Chalco-Cano & G. Ruiz-Garzón & H. Román-Flores, 2014. "On some characterizations of preinvex fuzzy mappings," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 771-783, July.
    15. Shi, Fangfang & Ye, Guoju & Liu, Wei & Zhao, Dafang, 2023. "A class of nonconvex fuzzy optimization problems under granular differentiability concept," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 430-444.
    16. Xiaobin Yang & Haitao Lin & Gang Xiao & Huanbin Xue & Xiaopeng Yang, 2019. "Resolution of Max-Product Fuzzy Relation Equation with Interval-Valued Parameter," Complexity, Hindawi, vol. 2019, pages 1-16, February.
    17. Jiang, C. & Han, X. & Liu, G.R. & Liu, G.P., 2008. "A nonlinear interval number programming method for uncertain optimization problems," European Journal of Operational Research, Elsevier, vol. 188(1), pages 1-13, July.
    18. Zhou, Feng & Huang, Gordon H. & Chen, Guo-Xian & Guo, Huai-Cheng, 2009. "Enhanced-interval linear programming," European Journal of Operational Research, Elsevier, vol. 199(2), pages 323-333, December.
    19. T. Antczak, 2013. "A Lower Bound for the Penalty Parameter in the Exact Minimax Penalty Function Method for Solving Nondifferentiable Extremum Problems," Journal of Optimization Theory and Applications, Springer, vol. 159(2), pages 437-453, November.
    20. Tadeusz Antczak & Najeeb Abdulaleem, 2023. "On the exactness and the convergence of the $$l_{1}$$ l 1 exact penalty E-function method for E-differentiable optimization problems," OPSEARCH, Springer;Operational Research Society of India, vol. 60(3), pages 1331-1359, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:176:y:2018:i:1:d:10.1007_s10957-017-1204-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.