IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v237y2014i3p836-845.html
   My bibliography  Save this article

Robust combinatorial optimization with variable cost uncertainty

Author

Listed:
  • Poss, Michael

Abstract

We present in this paper a new model for robust combinatorial optimization with cost uncertainty that generalizes the classical budgeted uncertainty set. We suppose here that the budget of uncertainty is given by a function of the problem variables, yielding an uncertainty multifunction. The new model is less conservative than the classical model and approximates better Value-at-Risk objective functions, especially for vectors with few non-zero components. An example of budget function is constructed from the probabilistic bounds computed by Bertsimas and Sim. We provide an asymptotically tight bound for the cost reduction obtained with the new model. We turn then to the tractability of the resulting optimization problems. We show that when the budget function is affine, the resulting optimization problems can be solved by solving n+1 deterministic problems. We propose combinatorial algorithms to handle problems with more general budget functions. We also adapt existing dynamic programming algorithms to solve faster the robust counterparts of optimization problems, which can be applied both to the traditional budgeted uncertainty model and to our new model. We evaluate numerically the reduction in the price of robustness obtained with the new model on the shortest path problem and on a survivable network design problem.

Suggested Citation

  • Poss, Michael, 2014. "Robust combinatorial optimization with variable cost uncertainty," European Journal of Operational Research, Elsevier, vol. 237(3), pages 836-845.
  • Handle: RePEc:eee:ejores:v:237:y:2014:i:3:p:836-845
    DOI: 10.1016/j.ejor.2014.02.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714002124
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.02.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    2. F. Benjamin Zhan & Charles E. Noon, 1998. "Shortest Path Algorithms: An Evaluation Using Real Road Networks," Transportation Science, INFORMS, vol. 32(1), pages 65-73, February.
    3. Quentin Botton & Bernard Fortz & Luis Gouveia & Michael Poss, 2013. "Benders Decomposition for the Hop-Constrained Survivable Network Design Problem," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 13-26, February.
    4. Chungmok Lee & Kyungsik Lee & Kyungchul Park & Sungsoo Park, 2012. "Technical Note---Branch-and-Price-and-Cut Approach to the Robust Network Design Problem Without Flow Bifurcations," Operations Research, INFORMS, vol. 60(3), pages 604-610, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Artur Alves Pessoa & Michael Poss & Ruslan Sadykov & François Vanderbeck, 2021. "Branch-Cut-and-Price for the Robust Capacitated Vehicle Routing Problem with Knapsack Uncertainty," Operations Research, INFORMS, vol. 69(3), pages 739-754, May.
    2. Enrico Bartolini & Dominik Goeke & Michael Schneider & Mengdie Ye, 2021. "The Robust Traveling Salesman Problem with Time Windows Under Knapsack-Constrained Travel Time Uncertainty," Transportation Science, INFORMS, vol. 55(2), pages 371-394, March.
    3. Mehdi Ansari & Juan S. Borrero & Leonardo Lozano, 2023. "Robust Minimum-Cost Flow Problems Under Multiple Ripple Effect Disruptions," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 83-103, January.
    4. Claire Nicolas & Stéphane Tchung-Ming & Emmanuel Hache, 2016. "Energy transition in transportation under cost uncertainty, an assessment based on robust optimization," Working Papers hal-02475943, HAL.
    5. Matthews, Logan R. & Gounaris, Chrysanthos E. & Kevrekidis, Ioannis G., 2019. "Designing networks with resiliency to edge failures using two-stage robust optimization," European Journal of Operational Research, Elsevier, vol. 279(3), pages 704-720.
    6. Fliedner, Thomas & Liesiö, Juuso, 2016. "Adjustable robustness for multi-attribute project portfolio selection," European Journal of Operational Research, Elsevier, vol. 252(3), pages 931-946.
    7. Di Puglia Pugliese, Luigi & Ferone, Daniele & Macrina, Giusy & Festa, Paola & Guerriero, Francesca, 2023. "The crowd-shipping with penalty cost function and uncertain travel times," Omega, Elsevier, vol. 115(C).
    8. Annette M. C. Ficker & Frits C. R. Spieksma & Gerhard J. Woeginger, 2018. "Robust balanced optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 239-266, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Ma & Foad Mahdavi Pajouh & Balabhaskar Balasundaram & Vladimir Boginski, 2016. "The Minimum Spanning k -Core Problem with Bounded CVaR Under Probabilistic Edge Failures," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 295-307, May.
    2. Zhang, Guowei & Jia, Ning & Zhu, Ning & Adulyasak, Yossiri & Ma, Shoufeng, 2023. "Robust drone selective routing in humanitarian transportation network assessment," European Journal of Operational Research, Elsevier, vol. 305(1), pages 400-428.
    3. Pu, Song & Zhan, Shuguang, 2021. "Two-stage robust railway line-planning approach with passenger demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    4. Seohee Kim & Chungmok Lee, 2021. "A branch and price approach for the robust bandwidth packing problem with queuing delays," Annals of Operations Research, Springer, vol. 307(1), pages 251-275, December.
    5. Artur Alves Pessoa & Michael Poss & Ruslan Sadykov & François Vanderbeck, 2021. "Branch-Cut-and-Price for the Robust Capacitated Vehicle Routing Problem with Knapsack Uncertainty," Operations Research, INFORMS, vol. 69(3), pages 739-754, May.
    6. Artur Alves Pessoa & Michael Poss, 2015. "Robust Network Design with Uncertain Outsourcing Cost," INFORMS Journal on Computing, INFORMS, vol. 27(3), pages 507-524, August.
    7. Seulgi Joung & Seyoung Oh & Kyungsik Lee, 2023. "Comparative analysis of linear programming relaxations for the robust knapsack problem," Annals of Operations Research, Springer, vol. 323(1), pages 65-78, April.
    8. Jianwen Ren & Yingqiang Xu & Shiyuan Wang, 2018. "A Distributed Robust Dispatch Approach for Interconnected Systems with a High Proportion of Wind Power Penetration," Energies, MDPI, vol. 11(4), pages 1-18, April.
    9. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    10. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    11. Almobaideen, Wesam & Krayshan, Rand & Allan, Mamoon & Saadeh, Maha, 2017. "Internet of Things: Geographical Routing based on healthcare centers vicinity for mobile smart tourism destination," Technological Forecasting and Social Change, Elsevier, vol. 123(C), pages 342-350.
    12. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    13. Li, Shukai & Liu, Ronghui & Yang, Lixing & Gao, Ziyou, 2019. "Robust dynamic bus controls considering delay disturbances and passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 88-109.
    14. Jeong, Jaehee & Premsankar, Gopika & Ghaddar, Bissan & Tarkoma, Sasu, 2024. "A robust optimization approach for placement of applications in edge computing considering latency uncertainty," Omega, Elsevier, vol. 126(C).
    15. Chassein, André & Dokka, Trivikram & Goerigk, Marc, 2019. "Algorithms and uncertainty sets for data-driven robust shortest path problems," European Journal of Operational Research, Elsevier, vol. 274(2), pages 671-686.
    16. Kandpal, Bakul & Pareek, Parikshit & Verma, Ashu, 2022. "A robust day-ahead scheduling strategy for EV charging stations in unbalanced distribution grid," Energy, Elsevier, vol. 249(C).
    17. Guo, Shiliang & Li, Pengpeng & Ma, Kai & Yang, Bo & Yang, Jie, 2022. "Robust energy management for industrial microgrid considering charging and discharging pressure of electric vehicles," Applied Energy, Elsevier, vol. 325(C).
    18. Shen, Feifei & Zhao, Liang & Wang, Meihong & Du, Wenli & Qian, Feng, 2022. "Data-driven adaptive robust optimization for energy systems in ethylene plant under demand uncertainty," Applied Energy, Elsevier, vol. 307(C).
    19. Baringo, Luis & Boffino, Luigi & Oggioni, Giorgia, 2020. "Robust expansion planning of a distribution system with electric vehicles, storage and renewable units," Applied Energy, Elsevier, vol. 265(C).
    20. Hasani, Aliakbar & Khosrojerdi, Amirhossein, 2016. "Robust global supply chain network design under disruption and uncertainty considering resilience strategies: A parallel memetic algorithm for a real-life case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 20-52.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:237:y:2014:i:3:p:836-845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.