IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v55y2021i2p371-394.html
   My bibliography  Save this article

The Robust Traveling Salesman Problem with Time Windows Under Knapsack-Constrained Travel Time Uncertainty

Author

Listed:
  • Enrico Bartolini

    (Deutsche Post Chair – Optimization of Distribution Networks, School of Business and Economics, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, 52062 Aachen, Germany;)

  • Dominik Goeke

    (Lufthansa Systems GmbH & Co.KG, 65479 Raunheim, Germany)

  • Michael Schneider

    (Deutsche Post Chair – Optimization of Distribution Networks, School of Business and Economics, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, 52062 Aachen, Germany;)

  • Mengdie Ye

    (Deutsche Post Chair – Optimization of Distribution Networks, School of Business and Economics, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, 52062 Aachen, Germany;)

Abstract

We study the traveling salesman problem with time windows (TSPTW) under travel time uncertainty—modeled by means of an uncertainty set including all travel time vectors of interest. We consider a knapsack-constrained uncertainty set stipulating a nominal and a peak travel time for each arc and an upper bound Δ on the sum of all deviations from the nominal times. Viewing the difference between the peak time and its nominal value as the maximum delay possibly incurred when traversing the corresponding arc, the problem we consider is thus to find a tour that remains feasible for up to Δ units of delay. This differs from previous studies on robust routing under travel time uncertainty, which have relied on cardinality-constrained sets and only allow for an upper bound on the number of arcs with peak travel time. We propose an exact algorithm based on column generation and dynamic programming that involves effective dominance rules and an extension of the n g -tour relaxation proposed in the literature for the classical TSPTW. The algorithm is able to solve the robust TSPTW under both knapsack- and cardinality-constrained travel time uncertainty. Extensive computational experiments show that the algorithm is successful on instances with up to 80 customers. In addition, we study the impact of the two uncertainty sets on the trade-off between service quality and cost exhibited by the resulting solutions.

Suggested Citation

  • Enrico Bartolini & Dominik Goeke & Michael Schneider & Mengdie Ye, 2021. "The Robust Traveling Salesman Problem with Time Windows Under Knapsack-Constrained Travel Time Uncertainty," Transportation Science, INFORMS, vol. 55(2), pages 371-394, March.
  • Handle: RePEc:inm:ortrsc:v:55:y:2021:i:2:p:371-394
    DOI: 10.1287/trsc.2020.1011
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/trsc.2020.1011
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2020.1011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chardy, Matthieu & Klopfenstein, Olivier, 2012. "Handling uncertainties in vehicle routing problems through data preprocessing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(3), pages 667-683.
    2. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    3. Ulrike Ritzinger & Jakob Puchinger & Richard F. Hartl, 2016. "A survey on dynamic and stochastic vehicle routing problems," International Journal of Production Research, Taylor & Francis Journals, vol. 54(1), pages 215-231, January.
    4. Chrysanthos E. Gounaris & Wolfram Wiesemann & Christodoulos A. Floudas, 2013. "The Robust Capacitated Vehicle Routing Problem Under Demand Uncertainty," Operations Research, INFORMS, vol. 61(3), pages 677-693, June.
    5. Jinil Han & Chungmok Lee & Sungsoo Park, 2014. "A Robust Scenario Approach for the Vehicle Routing Problem with Uncertain Travel Times," Transportation Science, INFORMS, vol. 48(3), pages 373-390, August.
    6. Patrick Jaillet & Jin Qi & Melvyn Sim, 2016. "Routing Optimization Under Uncertainty," Operations Research, INFORMS, vol. 64(1), pages 186-200, February.
    7. Poss, Michael, 2014. "Robust combinatorial optimization with variable cost uncertainty," European Journal of Operational Research, Elsevier, vol. 237(3), pages 836-845.
    8. Michel Gendreau & Alain Hertz & Gilbert Laporte & Mihnea Stan, 1998. "A Generalized Insertion Heuristic for the Traveling Salesman Problem with Time Windows," Operations Research, INFORMS, vol. 46(3), pages 330-335, June.
    9. Anirudh Subramanyam & Panagiotis P. Repoussis & Chrysanthos E. Gounaris, 2020. "Robust Optimization of a Broad Class of Heterogeneous Vehicle Routing Problems Under Demand Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 661-681, July.
    10. ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
    11. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.
    12. Michel Gendreau & Ola Jabali & Walter Rei, 2016. "50th Anniversary Invited Article—Future Research Directions in Stochastic Vehicle Routing," Transportation Science, INFORMS, vol. 50(4), pages 1163-1173, November.
    13. Pedro Munari & Alfredo Moreno & Jonathan De La Vega & Douglas Alem & Jacek Gondzio & Reinaldo Morabito, 2019. "The Robust Vehicle Routing Problem with Time Windows: Compact Formulation and Branch-Price-and-Cut Method," Transportation Science, INFORMS, vol. 53(4), pages 1043-1066, July.
    14. Jeffrey W. Ohlmann & Barrett W. Thomas, 2007. "A Compressed-Annealing Heuristic for the Traveling Salesman Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 80-90, February.
    15. Roberto Baldacci & Aristide Mingozzi & Roberto Roberti, 2012. "New State-Space Relaxations for Solving the Traveling Salesman Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 356-371, August.
    16. Chassein, André & Dokka, Trivikram & Goerigk, Marc, 2019. "Algorithms and uncertainty sets for data-driven robust shortest path problems," European Journal of Operational Research, Elsevier, vol. 274(2), pages 671-686.
    17. C Lee & K Lee & S Park, 2012. "Robust vehicle routing problem with deadlines and travel time/demand uncertainty," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(9), pages 1294-1306, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zang, Xiaoning & Jiang, Li & Liang, Changyong & Fang, Xiang, 2023. "Coordinated home and locker deliveries: An exact approach for the urban delivery problem with conflicting time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    2. Carolin Bauerhenne & Jonathan Bard & Rainer Kolisch, 2024. "Robust Routing and Scheduling of Home Healthcare Workers: A Nested Branch-and-Price Approach," Papers 2407.06215, arXiv.org.
    3. Yu, Vincent F. & Anh, Pham Tuan & Baldacci, Roberto, 2023. "A robust optimization approach for the vehicle routing problem with cross-docking under demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Vincent F. & Anh, Pham Tuan & Baldacci, Roberto, 2023. "A robust optimization approach for the vehicle routing problem with cross-docking under demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    2. Artur Alves Pessoa & Michael Poss & Ruslan Sadykov & François Vanderbeck, 2021. "Branch-Cut-and-Price for the Robust Capacitated Vehicle Routing Problem with Knapsack Uncertainty," Operations Research, INFORMS, vol. 69(3), pages 739-754, May.
    3. Shubhechyya Ghosal & Wolfram Wiesemann, 2020. "The Distributionally Robust Chance-Constrained Vehicle Routing Problem," Operations Research, INFORMS, vol. 68(3), pages 716-732, May.
    4. Maria João Santos & Pedro Amorim & Alexandra Marques & Ana Carvalho & Ana Póvoa, 2020. "The vehicle routing problem with backhauls towards a sustainability perspective: a review," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 358-401, July.
    5. Maaike Hoogeboom & Yossiri Adulyasak & Wout Dullaert & Patrick Jaillet, 2021. "The Robust Vehicle Routing Problem with Time Window Assignments," Transportation Science, INFORMS, vol. 55(2), pages 395-413, March.
    6. Markov, Iliya & Bierlaire, Michel & Cordeau, Jean-François & Maknoon, Yousef & Varone, Sacha, 2018. "A unified framework for rich routing problems with stochastic demands," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 213-240.
    7. Yu Zhang & Zhenzhen Zhang & Andrew Lim & Melvyn Sim, 2021. "Robust Data-Driven Vehicle Routing with Time Windows," Operations Research, INFORMS, vol. 69(2), pages 469-485, March.
    8. Patrick Jaillet & Jin Qi & Melvyn Sim, 2016. "Routing Optimization Under Uncertainty," Operations Research, INFORMS, vol. 64(1), pages 186-200, February.
    9. Jonathan De La Vega & Pedro Munari & Reinaldo Morabito, 2019. "Robust optimization for the vehicle routing problem with multiple deliverymen," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(4), pages 905-936, December.
    10. Balcik, Burcu & Yanıkoğlu, İhsan, 2020. "A robust optimization approach for humanitarian needs assessment planning under travel time uncertainty," European Journal of Operational Research, Elsevier, vol. 282(1), pages 40-57.
    11. Shunichi Ohmori, 2021. "A Predictive Prescription Using Minimum Volume k -Nearest Neighbor Enclosing Ellipsoid and Robust Optimization," Mathematics, MDPI, vol. 9(2), pages 1-16, January.
    12. Zhao, Lei & Bi, Xinhua & Li, Gendao & Dong, Zhaohui & Xiao, Ni & Zhao, Anni, 2022. "Robust traveling salesman problem with multiple drones: Parcel delivery under uncertain navigation environments," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    13. Longsheng Sun & Mark H. Karwan & Changhyun Kwon, 2018. "Generalized Bounded Rationality and Robust Multicommodity Network Design," Operations Research, INFORMS, vol. 66(1), pages 42-57, 1-2.
    14. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2017. "The stochastic vehicle routing problem, a literature review, Part II: solution methods," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 349-388, December.
    15. Fontaine, Romain & Dibangoye, Jilles & Solnon, Christine, 2023. "Exact and anytime approach for solving the time dependent traveling salesman problem with time windows," European Journal of Operational Research, Elsevier, vol. 311(3), pages 833-844.
    16. Roos, Ernst & den Hertog, Dick, 2019. "Reducing conservatism in robust optimization," Other publications TiSEM ad0238cd-de7a-4366-b487-b, Tilburg University, School of Economics and Management.
    17. Carolin Bauerhenne & Jonathan Bard & Rainer Kolisch, 2024. "Robust Routing and Scheduling of Home Healthcare Workers: A Nested Branch-and-Price Approach," Papers 2407.06215, arXiv.org.
    18. Yang, Meng & Ni, Yaodong & Song, Qinyu, 2022. "Optimizing driver consistency in the vehicle routing problem under uncertain environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    19. Claire Nicolas & Stéphane Tchung-Ming & Emmanuel Hache, 2016. "Energy transition in transportation under cost uncertainty, an assessment based on robust optimization," Working Papers hal-02475943, HAL.
    20. Marla, Lavanya & Rikun, Alexander & Stauffer, Gautier & Pratsini, Eleni, 2020. "Robust modeling and planning: Insights from three industrial applications," Operations Research Perspectives, Elsevier, vol. 7(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:55:y:2021:i:2:p:371-394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.