IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v315y2024i2p626-641.html
   My bibliography  Save this article

Robust data envelopment analysis with variable budgeted uncertainty

Author

Listed:
  • Arabmaldar, Aliasghar
  • Hatami-Marbini, Adel
  • Loske, Dominic
  • Hammerschmidt, Maik
  • Klumpp, Matthias

Abstract

Including uncertainty in data envelopment analysis (DEA) is vital to achieving stable and reliable performance evaluations for the field of operational research as business environments are becoming increasingly volatile and unpredictable. Robust DEA models with budgeted uncertainty have been drawing particular attention in the DEA literature for modelling uncertainties, aiming to obtain robust efficiency scores in a way that guarantees the feasibility of solutions. A concern with such robust DEA models – which has been largely ignored in the literature – is that incorporating high uncertainty levels might result in too conservative efficiency measures, possibly reducing the decision support value of such information. To address this concern, this paper tackles uncertainties by employing variable budgeted uncertainty, which is a generalisation of the budgeted uncertainty. We introduce a novel robust DEA model with variable budgeted uncertainty that is less conservative than extant robust DEA models. Furthermore, we suggest a solution for specifying the probabilistic bounds for constraint violations of the uncertain parameters in robust DEA models. A comparison of the introduced robust DEA model with existing robust DEA models based on a numerical example shows an average reduction in the price of robustness by approximately 20%. Finally, the usefulness and applicability of the suggested model are demonstrated by using a large-scale data set in the context of grocery retailing.

Suggested Citation

  • Arabmaldar, Aliasghar & Hatami-Marbini, Adel & Loske, Dominic & Hammerschmidt, Maik & Klumpp, Matthias, 2024. "Robust data envelopment analysis with variable budgeted uncertainty," European Journal of Operational Research, Elsevier, vol. 315(2), pages 626-641.
  • Handle: RePEc:eee:ejores:v:315:y:2024:i:2:p:626-641
    DOI: 10.1016/j.ejor.2023.11.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723009025
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.11.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. SHOKOUHI, Amir H. & SHAHIRIARI, Hamid & AGRELL, Per J. & HATAMI-MARBINI, Adel, 2014. "Consistent and robust ranking in imprecise data envelopment analysis under perturbations of random subsets of data," LIDAM Reprints CORE 2556, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    3. Perrigot, Rozenn & Barros, Carlos Pestana, 2008. "Technical efficiency of French retailers," Journal of Retailing and Consumer Services, Elsevier, vol. 15(4), pages 296-305.
    4. Adel Hatami-Marbini & Aliasghar Arabmaldar & John Otu Asu, 2022. "Robust productivity growth and efficiency measurement with undesirable outputs: evidence from the oil industry," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1213-1254, December.
    5. Lee, Chia-Yen & Johnson, Andrew L., 2014. "Proactive data envelopment analysis: Effective production and capacity expansion in stochastic environments," European Journal of Operational Research, Elsevier, vol. 232(3), pages 537-548.
    6. Hatami-Marbini, Adel & Emrouznejad, Ali & Tavana, Madjid, 2011. "A taxonomy and review of the fuzzy data envelopment analysis literature: Two decades in the making," European Journal of Operational Research, Elsevier, vol. 214(3), pages 457-472, November.
    7. Rajiv Banker & Seok-Young Lee & Gordon Potter & Dhinu Srinivasan, 2010. "The impact of supervisory monitoring on high-end retail sales productivity," Annals of Operations Research, Springer, vol. 173(1), pages 25-37, January.
    8. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    9. Arabmaldar, A. & Jablonsky, J. & Hosseinzadeh Saljooghi, F., 2017. "A new robust DEA model and super-efficiency measure," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 138968, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    10. repec:inm:orijoo:v:4:y:2022:i:3:p:249-277 is not listed on IDEAS
    11. Toloo, Mehdi & Mensah, Emmanuel Kwasi & Salahi, Maziar, 2022. "Robust optimization and its duality in data envelopment analysis," Omega, Elsevier, vol. 108(C).
    12. Filadelfo Mateo & Tim Coelli & Chris O'Donnell, 2006. "Optimal Paths And Costs Of Adjustment In Dynamic DEA Models: With Application To Chilean Department Stores," Annals of Operations Research, Springer, vol. 145(1), pages 211-227, July.
    13. Yu, Wantao & Ramanathan, Ramakrishnan, 2009. "An assessment of operational efficiency of retail firms in China," Journal of Retailing and Consumer Services, Elsevier, vol. 16(2), pages 109-122.
    14. Arabmaldar, Aliasghar & Sahoo, Biresh K. & Ghiyasi, Mojtaba, 2023. "A generalized robust data envelopment analysis model based on directional distance function," European Journal of Operational Research, Elsevier, vol. 311(2), pages 617-632.
    15. Zhu, Joe, 2003. "Imprecise data envelopment analysis (IDEA): A review and improvement with an application," European Journal of Operational Research, Elsevier, vol. 144(3), pages 513-529, February.
    16. O. B. Olesen & N. C. Petersen, 1995. "Chance Constrained Efficiency Evaluation," Management Science, INFORMS, vol. 41(3), pages 442-457, March.
    17. Hatami-Marbini, A. & Arabmaldar, A. & Otu Asu, J., 2022. "Robust productivity growth and efficiency measurement with undesirable outputs: evidence from the oil industry," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 138964, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    18. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    19. Keh, Hean Tat & Chu, Singfat, 2003. "Retail productivity and scale economies at the firm level: a DEA approach," Omega, Elsevier, vol. 31(2), pages 75-82, April.
    20. Maria Pires & Ana Camanho & Pedro Amorim, 2020. "Solving the grocery backroom sizing problem," International Journal of Production Research, Taylor & Francis Journals, vol. 58(18), pages 5707-5720, September.
    21. Hatami-Marbini, A. & Arabmaldar, A., 2021. "Robustness of Farrell cost efficiency measurement under data perturbations: Evidence from a US manufacturing application," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 138965, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    22. C Kao & H-T Hung, 2005. "Data envelopment analysis with common weights: the compromise solution approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(10), pages 1196-1203, October.
    23. Cazals, Catherine & Florens, Jean-Pierre & Simar, Leopold, 2002. "Nonparametric frontier estimation: a robust approach," Journal of Econometrics, Elsevier, vol. 106(1), pages 1-25, January.
    24. Patrick L. Brockett & Boaz Golany, 1996. "Using Rank Statistics for Determining Programmatic Efficiency Differences in Data Envelopment Analysis," Management Science, INFORMS, vol. 42(3), pages 466-472, March.
    25. Pekka Korhonen & Mikko Syrjänen, 2004. "Resource Allocation Based on Efficiency Analysis," Management Science, INFORMS, vol. 50(8), pages 1134-1144, August.
    26. Neves Bezerra de Melo, Felipe Luiz & Sampaio, Raquel Menezes Bezerra & Sampaio, Luciano Menezes Bezerra, 2018. "Efficiency, productivity gains, and the size of Brazilian supermarkets," International Journal of Production Economics, Elsevier, vol. 197(C), pages 99-111.
    27. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    28. SHOKOUHI, Amir H. & HATAMI-MARBINI, Adel & TAVANA, Madjid & SAATI, Saber, 2010. "A robust optimization approach for imprecise data envelopment analysis," LIDAM Reprints CORE 2215, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shutian Cui & Renlong Wang & Xiaoyan Li, 2024. "A Novel $\delta$-SBM-OPA Approach for Policy-Driven Analysis of Carbon Emission Efficiency under Uncertainty in the Chinese Industrial Sector," Papers 2408.11600, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arabmaldar, Aliasghar & Sahoo, Biresh K. & Ghiyasi, Mojtaba, 2023. "A generalized robust data envelopment analysis model based on directional distance function," European Journal of Operational Research, Elsevier, vol. 311(2), pages 617-632.
    2. Adel Hatami-Marbini & Aliasghar Arabmaldar & John Otu Asu, 2022. "Robust productivity growth and efficiency measurement with undesirable outputs: evidence from the oil industry," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1213-1254, December.
    3. Emmanuel Kwasi Mensah, 2020. "Robust data envelopment analysis via ellipsoidal uncertainty sets with application to the Italian banking industry," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 491-518, December.
    4. Toloo, Mehdi & Mensah, Emmanuel Kwasi & Salahi, Maziar, 2022. "Robust optimization and its duality in data envelopment analysis," Omega, Elsevier, vol. 108(C).
    5. Hatami-Marbini, Adel & Arabmaldar, Aliasghar, 2021. "Robustness of Farrell cost efficiency measurement under data perturbations: Evidence from a US manufacturing application," European Journal of Operational Research, Elsevier, vol. 295(2), pages 604-620.
    6. Jie Wu & Lulu Shen & Ganggang Zhang & Zhixiang Zhou & Qingyuan Zhu, 2024. "Efficiency evaluation with data uncertainty," Annals of Operations Research, Springer, vol. 339(3), pages 1379-1403, August.
    7. Kyungwan Ko & Meehyang Chang & Eun-Song Bae & Daecheol Kim, 2017. "Efficiency Analysis of Retail Chain Stores in Korea," Sustainability, MDPI, vol. 9(9), pages 1-14, September.
    8. Manuel Xavier, José & Ferreira Moutinho, Victor & Carrizo Moreira, António, 2015. "An empirical examination of performance in the clothing retailing industry: A case study," Journal of Retailing and Consumer Services, Elsevier, vol. 25(C), pages 96-105.
    9. Dimitrios Giokas & Nicolaos Eriotis & Ioannis Dokas, 2015. "Efficiency and productivity of the food and beverage listed firms in the pre-recession and recessionary periods in Greece," Applied Economics, Taylor & Francis Journals, vol. 47(19), pages 1927-1941, April.
    10. Mehdi Toloo & Esmaeil Keshavarz & Adel Hatami-Marbini, 2021. "An interval efficiency analysis with dual-role factors," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 255-287, March.
    11. Adel Hatami-Marbini & Zahra Ghelej Beigi & Hirofumi Fukuyama & Kobra Gholami, 2015. "Modeling Centralized Resources Allocation and Target Setting in Imprecise Data Envelopment Analysis," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(06), pages 1189-1213, November.
    12. Pejman Peykani & Jafar Gheidar-Kheljani & Reza Farzipoor Saen & Emran Mohammadi, 2022. "Generalized robust window data envelopment analysis approach for dynamic performance measurement under uncertain panel data," Operational Research, Springer, vol. 22(5), pages 5529-5567, November.
    13. Dimitris Balios & Nikolaos Eriotis & Alexandra Fragoudaki & Dimitrios Giokas, 2015. "Economic efficiency of Greek retail SMEs in a period of high fluctuations in economic activity: a DEA approach," Applied Economics, Taylor & Francis Journals, vol. 47(33), pages 3577-3593, July.
    14. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499.
    15. Matthias Klumpp & Dominic Loske, 2021. "Sustainability and Resilience Revisited: Impact of Information Technology Disruptions on Empirical Retail Logistics Efficiency," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    16. Prakashan Veettil & Stijn Speelman & Guido Huylenbroeck, 2013. "Estimating the Impact of Water Pricing on Water Use Efficiency in Semi-arid Cropping System: An Application of Probabilistically Constrained Nonparametric Efficiency Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 55-73, January.
    17. Adel Hatami-Marbini & Zahra Ghelej Beigi & Jens Leth Hougaard & Kobra Gholami, 2014. "Estimating Returns to Scale in Imprecise Data Envelopment Analysis," MSAP Working Paper Series 07_2014, University of Copenhagen, Department of Food and Resource Economics.
    18. Adel Hatami-Marbini & Per J. Agrell & Hirofumi Fukuyama & Kobra Gholami & Pegah Khoshnevis, 2017. "The role of multiplier bounds in fuzzy data envelopment analysis," Annals of Operations Research, Springer, vol. 250(1), pages 249-276, March.
    19. Shaher Z. Zahran & Jobair Bin Alam & Abdulrahem H. Al-Zahrani & Yiannis Smirlis & Stratos Papadimitriou & Vangelis Tsioumas, 2020. "Analysis of port efficiency using imprecise and incomplete data," Operational Research, Springer, vol. 20(1), pages 219-246, March.
    20. Kuosmanen, Timo & Post, Thierry & Scholtes, Stefan, 2007. "Non-parametric tests of productive efficiency with errors-in-variables," Journal of Econometrics, Elsevier, vol. 136(1), pages 131-162, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:315:y:2024:i:2:p:626-641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.