IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v225y2013i1p12-20.html
   My bibliography  Save this article

Steady-state optimization of biochemical systems through geometric programming

Author

Listed:
  • Xu, Gongxian

Abstract

This paper presents an iterative strategy to address the steady-state optimization of biochemical systems. In the method we take advantage of a special class of nonlinear kinetic models known as Generalized Mass Action (GMA) models. These systems are interesting in that they allow direct merging of stoichiometric and S-system models. In most cases nonconvex steady-state optimization problems with GMA models cannot be transformed into tractable convex formulations, but an iterative strategy can be used to compute the optimal solution by solving a series of geometric programming. The presented framework is applied to several case studies and shown to the tractability and effectiveness of the method. The simulation is also studied to investigate the convergence properties of the algorithm and to give a performance comparison of our proposed and other approaches.

Suggested Citation

  • Xu, Gongxian, 2013. "Steady-state optimization of biochemical systems through geometric programming," European Journal of Operational Research, Elsevier, vol. 225(1), pages 12-20.
  • Handle: RePEc:eee:ejores:v:225:y:2013:i:1:p:12-20
    DOI: 10.1016/j.ejor.2012.07.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722171200567X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.07.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barry R. Marks & Gordon P. Wright, 1978. "Technical Note—A General Inner Approximation Algorithm for Nonconvex Mathematical Programs," Operations Research, INFORMS, vol. 26(4), pages 681-683, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Gongxian, 2014. "Global optimization of signomial geometric programming problems," European Journal of Operational Research, Elsevier, vol. 233(3), pages 500-510.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziping Zhao & Rui Zhou & Zhongju Wang & Daniel P. Palomar, 2018. "Optimal Portfolio Design for Statistical Arbitrage in Finance," Papers 1803.02974, arXiv.org.
    2. Huang, Jinbo & Li, Yong & Yao, Haixiang, 2022. "Partial moments and indexation investment strategies," Journal of Empirical Finance, Elsevier, vol. 67(C), pages 39-59.
    3. Y. Shi & H. D. Tuan & H. Tuy & S. Su, 2017. "Global optimization for optimal power flow over transmission networks," Journal of Global Optimization, Springer, vol. 69(3), pages 745-760, November.
    4. Shiyong Li & Wei Sun & Huan Liu, 2022. "Optimal resource allocation for multiclass services in peer-to-peer networks via successive approximation," Operational Research, Springer, vol. 22(3), pages 2605-2630, July.
    5. Xu, Gongxian, 2014. "Global optimization of signomial geometric programming problems," European Journal of Operational Research, Elsevier, vol. 233(3), pages 500-510.
    6. Ata Allah Taleizadeh & Leila Aliabadi & Park Thaichon, 2022. "A sustainable inventory system with price-sensitive demand and carbon emissions under partial trade credit and partial backordering," Operational Research, Springer, vol. 22(4), pages 4471-4516, September.
    7. Kha-Hung Nguyen & Hieu V. Nguyen & Mai T. P. Le & Tuan X. Cao & Oh-Soon Shin, 2020. "Rate Fairness and Power Consumption Optimization for NOMA-Assisted Downlink Networks," Energies, MDPI, vol. 14(1), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:225:y:2013:i:1:p:12-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.