IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v170y2016i3d10.1007_s10957-016-0985-z.html
   My bibliography  Save this article

Solving Geometric Programming Problems with Normal, Linear and Zigzag Uncertainty Distributions

Author

Listed:
  • Rashed Khanjani Shiraz

    (University of Tabriz)

  • Madjid Tavana

    (La Salle University
    University of Paderborn)

  • Debora Di Caprio

    (York University
    Polo Tecnologico IISS G. Galilei)

  • Hirofumi Fukuyama

    (Fukuoka University)

Abstract

The authors were alerted by a communication of Ken Kortanek that the numerical results of the paper contained mistakes. After carefully checking the MatLab code used for the simulations, we have found a mistype in one of the equations implemented that has affected almost all the simulations. This note provides the corrected numerical results.

Suggested Citation

  • Rashed Khanjani Shiraz & Madjid Tavana & Debora Di Caprio & Hirofumi Fukuyama, 2016. "Solving Geometric Programming Problems with Normal, Linear and Zigzag Uncertainty Distributions," Journal of Optimization Theory and Applications, Springer, vol. 170(3), pages 1075-1078, September.
  • Handle: RePEc:spr:joptap:v:170:y:2016:i:3:d:10.1007_s10957-016-0985-z
    DOI: 10.1007/s10957-016-0985-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-016-0985-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-016-0985-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Belleh Fontem, 2023. "Robust Chance-Constrained Geometric Programming with Application to Demand Risk Mitigation," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 765-797, May.
    2. Huang, Xiaoxia & Ma, Di & Choe, Kwang-Il, 2023. "Uncertain mean–variance portfolio model with inflation taking linear uncertainty distributions," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 203-217.
    3. Tingting Yang & Xiaoxia Huang, 2022. "A New Portfolio Optimization Model Under Tracking-Error Constraint with Linear Uncertainty Distributions," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 723-747, November.
    4. Wasim Akram Mandal, 2021. "Weighted Tchebycheff Optimization Technique Under Uncertainty," Annals of Data Science, Springer, vol. 8(4), pages 709-731, December.
    5. Rashed Khanjani-Shiraz & Salman Khodayifar & Panos M. Pardalos, 2021. "Copula theory approach to stochastic geometric programming," Journal of Global Optimization, Springer, vol. 81(2), pages 435-468, October.
    6. Wasim Akram Mandal & Sahidul Islam, 2017. "Multiobjective geometric programming problem under uncertainty," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 27(4), pages 85-109.
    7. Dennis L. Bricker & K. O. Kortanek, 2017. "Perfect Duality in Solving Geometric Programming Problems Under Uncertainty," Journal of Optimization Theory and Applications, Springer, vol. 173(3), pages 1055-1065, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:170:y:2016:i:3:d:10.1007_s10957-016-0985-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.