IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v231y2013i3p770-778.html
   My bibliography  Save this article

A linear model for surface mining haul truck allocation incorporating shovel idle probabilities

Author

Listed:
  • Ta, Chung H.
  • Ingolfsson, Armann
  • Doucette, John

Abstract

We present models of trucks and shovels in oil sand surface mines. The models are formulated to minimize the number of trucks for a given set of shovels, subject to throughput and ore grade constraints. We quantify and validate the nonlinear relation between a shovel’s idle probability (which determines the shovel’s productivity) and the number of trucks assigned to the shovel via a simple approximation, based on the theory of finite source queues. We use linearization to incorporate this expression into linear integer programs. We assume in our integer programs that each shovel is assigned a single truck size but we outline how one could account for multiple truck sizes per shovel in an approximate fashion. The linearization of shovel idle probabilities allows us to formulate more accurate truck allocation models that are easily solvable for realistic-sized problems.

Suggested Citation

  • Ta, Chung H. & Ingolfsson, Armann & Doucette, John, 2013. "A linear model for surface mining haul truck allocation incorporating shovel idle probabilities," European Journal of Operational Research, Elsevier, vol. 231(3), pages 770-778.
  • Handle: RePEc:eee:ejores:v:231:y:2013:i:3:p:770-778
    DOI: 10.1016/j.ejor.2013.06.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713005043
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.06.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard C. Larson, 1975. "Approximating the Performance of Urban Emergency Service Systems," Operations Research, INFORMS, vol. 23(5), pages 845-868, October.
    2. Ernest Koenigsberg, 1960. "Finite Queues and Cyclic Queues," Operations Research, INFORMS, vol. 8(2), pages 246-253, April.
    3. Donald D. Eisenstein & Ananth. V. Iyer, 1997. "Garbage Collection in Chicago: A Dynamic Scheduling Model," Management Science, INFORMS, vol. 43(7), pages 922-933, July.
    4. Frank. J. Atkins and Alan J. MacFadyen, 2008. "A Resource Whose Time Has Come? The Alberta oil Sands as an Economic Resource," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 77-98.
    5. Alexandra M. Newman & Enrique Rubio & Rodrigo Caro & Andrés Weintraub & Kelly Eurek, 2010. "A Review of Operations Research in Mine Planning," Interfaces, INFORMS, vol. 40(3), pages 222-245, June.
    6. Delasay, Mohammad & Kolfal, Bora & Ingolfsson, Armann, 2012. "Maximizing throughput in finite-source parallel queue systems," European Journal of Operational Research, Elsevier, vol. 217(3), pages 554-559.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S.R. Patterson & E. Kozan & P. Hyland, 2016. "An integrated model of an open-pit coal mine: improving energy efficiency decisions," International Journal of Production Research, Taylor & Francis Journals, vol. 54(14), pages 4213-4227, July.
    2. Patterson, S.R. & Kozan, E. & Hyland, P., 2017. "Energy efficient scheduling of open-pit coal mine trucks," European Journal of Operational Research, Elsevier, vol. 262(2), pages 759-770.
    3. Aleksandr Rakhmangulov & Konstantin Burmistrov & Nikita Osintsev, 2024. "Multi-Criteria System’s Design Methodology for Selecting Open Pits Dump Trucks," Sustainability, MDPI, vol. 16(2), pages 1-34, January.
    4. Moradi Afrapoli, Ali & Tabesh, Mohammad & Askari-Nasab, Hooman, 2019. "A multiple objective transportation problem approach to dynamic truck dispatching in surface mines," European Journal of Operational Research, Elsevier, vol. 276(1), pages 331-342.
    5. Yuhao Zhang & Ziyu Zhao & Lin Bi & Liming Wang & Qing Gu, 2022. "Determination of Truck–Shovel Configuration of Open-Pit Mine: A Simulation Method Based on Mathematical Model," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    6. Chaowasakoo, Patarawan & Seppälä, Heikki & Koivo, Heikki & Zhou, Quan, 2017. "Improving fleet management in mines: The benefit of heterogeneous match factor," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1052-1065.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafael Epstein & Marcel Goic & Andrés Weintraub & Jaime Catalán & Pablo Santibáñez & Rodolfo Urrutia & Raúl Cancino & Sergio Gaete & Augusto Aguayo & Felipe Caro, 2012. "Optimizing Long-Term Production Plans in Underground and Open-Pit Copper Mines," Operations Research, INFORMS, vol. 60(1), pages 4-17, February.
    2. Roberto Aringhieri & Giuliana Carello & Daniela Morale, 2016. "Supporting decision making to improve the performance of an Italian Emergency Medical Service," Annals of Operations Research, Springer, vol. 236(1), pages 131-148, January.
    3. Amina Lamghari & Roussos Dimitrakopoulos & Jacques Ferland, 2015. "A hybrid method based on linear programming and variable neighborhood descent for scheduling production in open-pit mines," Journal of Global Optimization, Springer, vol. 63(3), pages 555-582, November.
    4. Akbar Karimi & Michel Gendreau & Vedat Verter, 2018. "Performance Approximation of Emergency Service Systems with Priorities and Partial Backups," Transportation Science, INFORMS, vol. 52(5), pages 1235-1252, October.
    5. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    6. Erhan Erkut & Armann Ingolfsson & Güneş Erdoğan, 2008. "Ambulance location for maximum survival," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(1), pages 42-58, February.
    7. Iannoni, Ana Paula & Morabito, Reinaldo & Saydam, Cem, 2011. "Optimizing large-scale emergency medical system operations on highways using the hypercube queuing model," Socio-Economic Planning Sciences, Elsevier, vol. 45(3), pages 105-117, September.
    8. Ana Iannoni & Reinaldo Morabito & Cem Saydam, 2008. "A hypercube queueing model embedded into a genetic algorithm for ambulance deployment on highways," Annals of Operations Research, Springer, vol. 157(1), pages 207-224, January.
    9. Amir Rastpour & Armann Ingolfsson & Bora Kolfal, 2020. "Modeling Yellow and Red Alert Durations for Ambulance Systems," Production and Operations Management, Production and Operations Management Society, vol. 29(8), pages 1972-1991, August.
    10. César Flores-Fonseca & Rodrigo Linfati & John Willmer Escobar, 2022. "Exact algorithms for production planning in mining considering the use of stockpiles and sequencing of power shovels in open-pit mines," Operational Research, Springer, vol. 22(3), pages 2529-2553, July.
    11. Su, Qiang & Luo, Qinyi & Huang, Samuel H., 2015. "Cost-effective analyses for emergency medical services deployment: A case study in Shanghai," International Journal of Production Economics, Elsevier, vol. 163(C), pages 112-123.
    12. Christina N. Burt & Lou Caccetta, 2014. "Equipment Selection for Surface Mining: A Review," Interfaces, INFORMS, vol. 44(2), pages 143-162, April.
    13. Gary E. Horne & Telba Z. Irony, 1994. "Queueing processes and trade‐offs during ship‐to‐shore transfer of cargo," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(2), pages 137-151, March.
    14. W. Brian Lambert & Andrea Brickey & Alexandra M. Newman & Kelly Eurek, 2014. "Open-Pit Block-Sequencing Formulations: A Tutorial," Interfaces, INFORMS, vol. 44(2), pages 127-142, April.
    15. Rajagopalan, Hari K. & Saydam, Cem, 2009. "A minimum expected response model: Formulation, heuristic solution, and application," Socio-Economic Planning Sciences, Elsevier, vol. 43(4), pages 253-262, December.
    16. K. Sirinanda & M. Brazil & P. Grossman & J. Rubinstein & D. Thomas, 2016. "Gradient-constrained discounted Steiner trees II: optimally locating a discounted Steiner point," Journal of Global Optimization, Springer, vol. 64(3), pages 515-532, March.
    17. Zhao, Yaping & Xu, Xiaoyun & Li, Haidong & Liu, Yanni, 2016. "Prioritized customer order scheduling to maximize throughput," European Journal of Operational Research, Elsevier, vol. 255(2), pages 345-356.
    18. Renaud Chicoisne & Daniel Espinoza & Marcos Goycoolea & Eduardo Moreno & Enrique Rubio, 2012. "A New Algorithm for the Open-Pit Mine Production Scheduling Problem," Operations Research, INFORMS, vol. 60(3), pages 517-528, June.
    19. Atkinson, J.B. & Kovalenko, I.N. & Kuznetsov, N. & Mykhalevych, K.V., 2008. "A hypercube queueing loss model with customer-dependent service rates," European Journal of Operational Research, Elsevier, vol. 191(1), pages 223-239, November.
    20. Soovin Yoon & Laura A. Albert, 2018. "An expected coverage model with a cutoff priority queue," Health Care Management Science, Springer, vol. 21(4), pages 517-533, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:231:y:2013:i:3:p:770-778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.