IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v278y2019i1p49-63.html
   My bibliography  Save this article

Indefinite multi-constrained separable quadratic optimization: Large-scale efficient solution

Author

Listed:
  • Edirisinghe, Chanaka
  • Jeong, Jaehwan

Abstract

Multi-constrained indefinite separable quadratic optimization occurs in many practical applications. However, it is an NP-hard problem and its solution even for problems of moderate size is computationally tedious. Extending our previous work on singly constrained problems, we develop the necessary theory and computational procedures for problems with multiple linear constraints, by employing iterative constraint aggregation, known as surrogation. The surrogate dual solution is obtained using a cutting plane technique over the multiplier search space, which then is used to develop a monotonic sequence of upper bounds that yields a near-global optimal solution. A detailed numerical analysis indicates the method is extremely efficient for quadratic programs with hundreds of thousands of variables. While the number of constraints affects the computational efficiency, it is still an order of magnitude superior, both in speed and quality, compared to leading commercial global optimization software. Preliminary results with application to mixed integer quadratic indefinite optimization further reveal the performance superiority of the proposed methodology relative to the standard techniques.

Suggested Citation

  • Edirisinghe, Chanaka & Jeong, Jaehwan, 2019. "Indefinite multi-constrained separable quadratic optimization: Large-scale efficient solution," European Journal of Operational Research, Elsevier, vol. 278(1), pages 49-63.
  • Handle: RePEc:eee:ejores:v:278:y:2019:i:1:p:49-63
    DOI: 10.1016/j.ejor.2019.04.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719303248
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.04.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alidaee, Bahram, 2014. "Zero duality gap in surrogate constraint optimization: A concise review of models," European Journal of Operational Research, Elsevier, vol. 232(2), pages 241-248.
    2. Freville, Arnaud & Plateau, Gerard, 1993. "An exact search for the solution of the surrogate dual of the 0-1 bidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 68(3), pages 413-421, August.
    3. Yuji Nakagawa & Ross J. W. James & César Rego & Chanaka Edirisinghe, 2014. "Entropy-Based Optimization of Nonlinear Separable Discrete Decision Models," Management Science, INFORMS, vol. 60(3), pages 695-707, March.
    4. Harvey J. Greenberg & William P. Pierskalla, 1970. "Surrogate Mathematical Programming," Operations Research, INFORMS, vol. 18(5), pages 924-939, October.
    5. Jingnan Chen & Liming Feng & Jiming Peng & Yinyu Ye, 2014. "Analytical Results and Efficient Algorithm for Optimal Portfolio Deleveraging with Market Impact," Operations Research, INFORMS, vol. 62(1), pages 195-206, February.
    6. Fred Glover, 1965. "A Multiphase-Dual Algorithm for the Zero-One Integer Programming Problem," Operations Research, INFORMS, vol. 13(6), pages 879-919, December.
    7. Bretthauer, Kurt M. & Shetty, Bala, 2002. "The nonlinear knapsack problem - algorithms and applications," European Journal of Operational Research, Elsevier, vol. 138(3), pages 459-472, May.
    8. David F. Rogers & Robert D. Plante & Richard T. Wong & James R. Evans, 1991. "Aggregation and Disaggregation Techniques and Methodology in Optimization," Operations Research, INFORMS, vol. 39(4), pages 553-582, August.
    9. Samir Elhedhli & Jean-Louis Goffin, 2005. "Efficient Production-Distribution System Design," Management Science, INFORMS, vol. 51(7), pages 1151-1164, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shaoze Li & Zhibin Deng & Cheng Lu & Junhao Wu & Jinyu Dai & Qiao Wang, 2023. "An efficient global algorithm for indefinite separable quadratic knapsack problems with box constraints," Computational Optimization and Applications, Springer, vol. 86(1), pages 241-273, September.
    2. Edirisinghe, Chanaka & Jeong, Jaehwan & Chen, Jingnan, 2021. "Optimal portfolio deleveraging under market impact and margin restrictions," European Journal of Operational Research, Elsevier, vol. 294(2), pages 746-759.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alidaee, Bahram, 2014. "Zero duality gap in surrogate constraint optimization: A concise review of models," European Journal of Operational Research, Elsevier, vol. 232(2), pages 241-248.
    2. Yoon, Yourim & Kim, Yong-Hyuk & Moon, Byung-Ro, 2012. "A theoretical and empirical investigation on the Lagrangian capacities of the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 218(2), pages 366-376.
    3. David Bergman, 2019. "An Exact Algorithm for the Quadratic Multiknapsack Problem with an Application to Event Seating," INFORMS Journal on Computing, INFORMS, vol. 31(3), pages 477-492, July.
    4. Yuji Nakagawa & Ross J. W. James & César Rego & Chanaka Edirisinghe, 2014. "Entropy-Based Optimization of Nonlinear Separable Discrete Decision Models," Management Science, INFORMS, vol. 60(3), pages 695-707, March.
    5. Marco Antonio Boschetti & Vittorio Maniezzo, 2022. "Matheuristics: using mathematics for heuristic design," 4OR, Springer, vol. 20(2), pages 173-208, June.
    6. Patriksson, Michael, 2008. "A survey on the continuous nonlinear resource allocation problem," European Journal of Operational Research, Elsevier, vol. 185(1), pages 1-46, February.
    7. Satoshi Suzuki & Daishi Kuroiwa, 2012. "Necessary and Sufficient Constraint Qualification for Surrogate Duality," Journal of Optimization Theory and Applications, Springer, vol. 152(2), pages 366-377, February.
    8. Ablanedo-Rosas, José H. & Rego, César, 2010. "Surrogate constraint normalization for the set covering problem," European Journal of Operational Research, Elsevier, vol. 205(3), pages 540-551, September.
    9. Liu, Haichao & Wang, Yang & Hao, Jin-Kao, 2024. "Solving the patient admission scheduling problem using constraint aggregation," European Journal of Operational Research, Elsevier, vol. 316(1), pages 85-99.
    10. Satoshi Suzuki & Daishi Kuroiwa, 2020. "Duality Theorems for Convex and Quasiconvex Set Functions," SN Operations Research Forum, Springer, vol. 1(1), pages 1-13, March.
    11. Arnaud Fréville & SaÏd Hanafi, 2005. "The Multidimensional 0-1 Knapsack Problem—Bounds and Computational Aspects," Annals of Operations Research, Springer, vol. 139(1), pages 195-227, October.
    12. Suzuki, Satoshi & Kuroiwa, Daishi & Lee, Gue Myung, 2013. "Surrogate duality for robust optimization," European Journal of Operational Research, Elsevier, vol. 231(2), pages 257-262.
    13. Martello, Silvano & Pisinger, David & Toth, Paolo, 2000. "New trends in exact algorithms for the 0-1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 123(2), pages 325-332, June.
    14. Wilhelm, Wilbert E. & Xu, Kaihong, 2002. "Prescribing product upgrades, prices and production levels over time in a stochastic environment," European Journal of Operational Research, Elsevier, vol. 138(3), pages 601-621, May.
    15. Vicens, E. & Alemany, M. E. & Andres, C. & Guarch, J. J., 2001. "A design and application methodology for hierarchical production planning decision support systems in an enterprise integration context," International Journal of Production Economics, Elsevier, vol. 74(1-3), pages 5-20, December.
    16. Merrick, James H. & Bistline, John E.T. & Blanford, Geoffrey J., 2024. "On representation of energy storage in electricity planning models," Energy Economics, Elsevier, vol. 136(C).
    17. Renaud Chicoisne, 2023. "Computational aspects of column generation for nonlinear and conic optimization: classical and linearized schemes," Computational Optimization and Applications, Springer, vol. 84(3), pages 789-831, April.
    18. Srinivasa, Anand V. & Wilhelm, Wilbert E., 1997. "A procedure for optimizing tactical response in oil spill clean up operations," European Journal of Operational Research, Elsevier, vol. 102(3), pages 554-574, November.
    19. Vahideh Sadat Abedi, 2017. "Allocation of advertising budget between multiple channels to support sales in multiple markets," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(2), pages 134-146, February.
    20. Ningyuan Chen & Steven Kou & Chun Wang, 2018. "A Partitioning Algorithm for Markov Decision Processes with Applications to Market Microstructure," Management Science, INFORMS, vol. 64(2), pages 784-803, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:278:y:2019:i:1:p:49-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.