IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v230y2013i1p190-199.html
   My bibliography  Save this article

Image collection planning for KOrea Multi-Purpose SATellite-2

Author

Listed:
  • Jang, Jinbong
  • Choi, Jiwoong
  • Bae, Hee-Jin
  • Choi, In-Chan

Abstract

This paper studies an image collection planning problem for a Korean satellite, KOMPSAT-2 (KOrea Multi-Purpose SATellite-2). KOMPSAT-2 has the mission goal of maximizing image acquisition in time and quality requested by customers and operates under several complicating conditions. One of the characteristics in KOMPSAT-2 is its strip mode operation, in which segments of continuous-observation areas with known sizes are captured one at a time. In this paper, we regard the segment as a group of adjoining geographical square regions (scenes), whose size must also be determined. Thus, the problem involves the determination of proper segment lengths as well as an image collection schedule. We present a binary integer programming model for this problem in a multi-orbit long-term planning environment and provide a heuristic solution approach based on the Lagrangian relaxation and subgradient methods. We also present the results of our computational experiment based on randomly generated data.

Suggested Citation

  • Jang, Jinbong & Choi, Jiwoong & Bae, Hee-Jin & Choi, In-Chan, 2013. "Image collection planning for KOrea Multi-Purpose SATellite-2," European Journal of Operational Research, Elsevier, vol. 230(1), pages 190-199.
  • Handle: RePEc:eee:ejores:v:230:y:2013:i:1:p:190-199
    DOI: 10.1016/j.ejor.2013.04.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722171300307X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.04.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Djamal Habet & Michel Vasquez & Yannick Vimont, 2010. "Bounding the optimum for the problem of scheduling the photographs of an Agile Earth Observing Satellite," Computational Optimization and Applications, Springer, vol. 47(2), pages 307-333, October.
    2. Gabrel, Virginie & Vanderpooten, Daniel, 2002. "Enumeration and interactive selection of efficient paths in a multiple criteria graph for scheduling an earth observing satellite," European Journal of Operational Research, Elsevier, vol. 139(3), pages 533-542, June.
    3. Glaydston Mattos Ribeiro & Miguel Fragoso Constantino & Luiz Antonio Nogueira Lorena, 2010. "Strong formulation for the spot 5 daily photograph scheduling problem," Journal of Combinatorial Optimization, Springer, vol. 20(4), pages 385-398, November.
    4. Marshall L. Fisher, 1981. "The Lagrangian Relaxation Method for Solving Integer Programming Problems," Management Science, INFORMS, vol. 27(1), pages 1-18, January.
    5. Virginie Gabrel & Alain Moulet & Cécile Murat & Vangelis Paschos, 1997. "A new single model and derived algorithms for the satellite shot planning problem using graph theory concepts," Annals of Operations Research, Springer, vol. 69(0), pages 115-134, January.
    6. Bianchessi, Nicola & Cordeau, Jean-Francois & Desrosiers, Jacques & Laporte, Gilbert & Raymond, Vincent, 2007. "A heuristic for the multi-satellite, multi-orbit and multi-user management of Earth observation satellites," European Journal of Operational Research, Elsevier, vol. 177(2), pages 750-762, March.
    7. J-F Cordeau & G Laporte, 2005. "Maximizing the value of an Earth observation satellite orbit," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(8), pages 962-968, August.
    8. William J. Wolfe & Stephen E. Sorensen, 2000. "Three Scheduling Algorithms Applied to the Earth Observing Systems Domain," Management Science, INFORMS, vol. 46(1), pages 148-166, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aaron B. Hoskins & Hugh R. Medal & Eghbal Rashidi, 2017. "Satellite constellation design for forest fire monitoring via a stochastic programing approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(8), pages 642-661, December.
    2. Chen, Xiaoyu & Reinelt, Gerhard & Dai, Guangming & Spitz, Andreas, 2019. "A mixed integer linear programming model for multi-satellite scheduling," European Journal of Operational Research, Elsevier, vol. 275(2), pages 694-707.
    3. Rigo, Cezar Antônio & Seman, Laio Oriel & Camponogara, Eduardo & Morsch Filho, Edemar & Bezerra, Eduardo Augusto & Munari, Pedro, 2022. "A branch-and-price algorithm for nanosatellite task scheduling to improve mission quality-of-service," European Journal of Operational Research, Elsevier, vol. 303(1), pages 168-183.
    4. Abraham, Gyula & Dosa, Gyorgy & Hvattum, Lars Magnus & Olaj, Tomas Attila & Tuza, Zsolt, 2023. "The board packing problem," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1056-1073.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiaoyu & Reinelt, Gerhard & Dai, Guangming & Spitz, Andreas, 2019. "A mixed integer linear programming model for multi-satellite scheduling," European Journal of Operational Research, Elsevier, vol. 275(2), pages 694-707.
    2. Zhang Ye & Hu Xiaoxuan & Zhu Waiming & Jin Peng, 2018. "Solving the Observing and Downloading Integrated Scheduling Problem of Earth Observation Satellite with a Quantum Genetic Algorithm," Journal of Systems Science and Information, De Gruyter, vol. 6(5), pages 399-420, October.
    3. Tangpattanakul, Panwadee & Jozefowiez, Nicolas & Lopez, Pierre, 2015. "A multi-objective local search heuristic for scheduling Earth observations taken by an agile satellite," European Journal of Operational Research, Elsevier, vol. 245(2), pages 542-554.
    4. Wang, Xin-Wei & Chen, Zhen & Han, Chao, 2016. "Scheduling for single agile satellite, redundant targets problem using complex networks theory," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 125-132.
    5. Philippe Monmousseau, 2021. "Scheduling of a Constellation of Satellites: Creating a Mixed-Integer Linear Model," Journal of Optimization Theory and Applications, Springer, vol. 191(2), pages 846-873, December.
    6. Alex Elkjær Vasegaard & Ilkyeong Moon & Peter Nielsen & Subrata Saha, 2023. "Determining the pricing strategy for different preference structures for the earth observation satellite scheduling problem through simulation and VIKOR," Flexible Services and Manufacturing Journal, Springer, vol. 35(3), pages 945-973, September.
    7. Bianchessi, Nicola & Cordeau, Jean-Francois & Desrosiers, Jacques & Laporte, Gilbert & Raymond, Vincent, 2007. "A heuristic for the multi-satellite, multi-orbit and multi-user management of Earth observation satellites," European Journal of Operational Research, Elsevier, vol. 177(2), pages 750-762, March.
    8. Rigo, Cezar Antônio & Seman, Laio Oriel & Camponogara, Eduardo & Morsch Filho, Edemar & Bezerra, Eduardo Augusto & Munari, Pedro, 2022. "A branch-and-price algorithm for nanosatellite task scheduling to improve mission quality-of-service," European Journal of Operational Research, Elsevier, vol. 303(1), pages 168-183.
    9. Lei He & Mathijs Weerdt & Neil Yorke-Smith, 2020. "Time/sequence-dependent scheduling: the design and evaluation of a general purpose tabu-based adaptive large neighbourhood search algorithm," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 1051-1078, April.
    10. Xiao, Yiyong & Zhang, Siyue & Yang, Pei & You, Meng & Huang, Jiaoying, 2019. "A two-stage flow-shop scheme for the multi-satellite observation and data-downlink scheduling problem considering weather uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 263-275.
    11. Karapetyan, Daniel & Mitrovic Minic, Snezana & Malladi, Krishna T. & Punnen, Abraham P., 2015. "Satellite downlink scheduling problem: A case study," Omega, Elsevier, vol. 53(C), pages 115-123.
    12. Jie Chun & Wenyuan Yang & Xiaolu Liu & Guohua Wu & Lei He & Lining Xing, 2023. "Deep Reinforcement Learning for the Agile Earth Observation Satellite Scheduling Problem," Mathematics, MDPI, vol. 11(19), pages 1-20, September.
    13. Wolosewicz, Cathy & Dauzère-Pérès, Stéphane & Aggoune, Riad, 2015. "A Lagrangian heuristic for an integrated lot-sizing and fixed scheduling problem," European Journal of Operational Research, Elsevier, vol. 244(1), pages 3-12.
    14. M Diaby & A L Nsakanda, 2006. "Large-scale capacitated part-routing in the presence of process and routing flexibilities and setup costs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(9), pages 1100-1112, September.
    15. Ogbe, Emmanuel & Li, Xiang, 2017. "A new cross decomposition method for stochastic mixed-integer linear programming," European Journal of Operational Research, Elsevier, vol. 256(2), pages 487-499.
    16. Mutsunori Yagiura & Toshihide Ibaraki & Fred Glover, 2004. "An Ejection Chain Approach for the Generalized Assignment Problem," INFORMS Journal on Computing, INFORMS, vol. 16(2), pages 133-151, May.
    17. Weijun Xie & Yanfeng Ouyang & Sze Chun Wong, 2016. "Reliable Location-Routing Design Under Probabilistic Facility Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 1128-1138, August.
    18. Shangyao Yan & Chun-Ying Chen & Chuan-Che Wu, 2012. "Solution methods for the taxi pooling problem," Transportation, Springer, vol. 39(3), pages 723-748, May.
    19. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    20. Mahalec, Vladimir & Chen, Yingwu & Liu, Xiaolu & He, Renjie & Sun, Kai, 2015. "Reconfiguration of satellite orbit for cooperative observation using variable-size multi-objective differential evolutionAuthor-Name: Chen, Yingguo," European Journal of Operational Research, Elsevier, vol. 242(1), pages 10-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:230:y:2013:i:1:p:190-199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.