IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v20y2010i4d10.1007_s10878-009-9215-z.html
   My bibliography  Save this article

Strong formulation for the spot 5 daily photograph scheduling problem

Author

Listed:
  • Glaydston Mattos Ribeiro

    (UFES—Universidade Federal do Espírito Santo)

  • Miguel Fragoso Constantino

    (Universidade de Lisboa)

  • Luiz Antonio Nogueira Lorena

    (INPE—Instituto Nacional de Pesquisas Espaciais)

Abstract

Earth observation satellites, such as the SPOT 5, take photographs of the earth according to consumers’ demands. Obtaining a good schedule for the photographs is a combinatorial optimization problem known in the literature as the daily photograph scheduling problem (DPSP). The DPSP consists of selecting a subset of photographs, from a set of candidates, to different cameras, maximizing a profit function and satisfying a large number of constraints. Commercial solvers, with standard integer programming formulations, are not able to solve some DPSP real instances available in the literature. In this paper we present a strengthened formulation for the DPSP, based on valid inequalities arising in node packing and 3-regular independence system polyhedra. This formulation was able, with a commercial solver, to solve to optimality all those instances in a short computation time.

Suggested Citation

  • Glaydston Mattos Ribeiro & Miguel Fragoso Constantino & Luiz Antonio Nogueira Lorena, 2010. "Strong formulation for the spot 5 daily photograph scheduling problem," Journal of Combinatorial Optimization, Springer, vol. 20(4), pages 385-398, November.
  • Handle: RePEc:spr:jcomop:v:20:y:2010:i:4:d:10.1007_s10878-009-9215-z
    DOI: 10.1007/s10878-009-9215-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-009-9215-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-009-9215-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Euler & M. Jünger & G. Reinelt, 1987. "Generalizations of Cliques, Odd Cycles and Anticycles and Their Relation to Independence System Polyhedra," Mathematics of Operations Research, INFORMS, vol. 12(3), pages 451-462, August.
    2. Michel Vasquez & Jin-Kao Hao, 2003. "Upper Bounds for the SPOT 5 Daily Photograph Scheduling Problem," Journal of Combinatorial Optimization, Springer, vol. 7(1), pages 87-103, March.
    3. Michele Conforti & Monique Laurent, 1988. "On the Facial Structure of Independence System Polyhedra," Mathematics of Operations Research, INFORMS, vol. 13(4), pages 543-555, November.
    4. J-F Cordeau & G Laporte, 2005. "Maximizing the value of an Earth observation satellite orbit," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(8), pages 962-968, August.
    5. Atamturk, Alper & Nemhauser, George L. & Savelsbergh, Martin W. P., 2000. "Conflict graphs in solving integer programming problems," European Journal of Operational Research, Elsevier, vol. 121(1), pages 40-55, February.
    6. Virginie Gabrel, 2006. "Strengthened 0-1 linear formulation for the daily satellite mission planning," Journal of Combinatorial Optimization, Springer, vol. 11(3), pages 341-346, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jang, Jinbong & Choi, Jiwoong & Bae, Hee-Jin & Choi, In-Chan, 2013. "Image collection planning for KOrea Multi-Purpose SATellite-2," European Journal of Operational Research, Elsevier, vol. 230(1), pages 190-199.
    2. Chen, Xiaoyu & Reinelt, Gerhard & Dai, Guangming & Spitz, Andreas, 2019. "A mixed integer linear programming model for multi-satellite scheduling," European Journal of Operational Research, Elsevier, vol. 275(2), pages 694-707.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiaoyu & Reinelt, Gerhard & Dai, Guangming & Spitz, Andreas, 2019. "A mixed integer linear programming model for multi-satellite scheduling," European Journal of Operational Research, Elsevier, vol. 275(2), pages 694-707.
    2. Bianchessi, Nicola & Cordeau, Jean-Francois & Desrosiers, Jacques & Laporte, Gilbert & Raymond, Vincent, 2007. "A heuristic for the multi-satellite, multi-orbit and multi-user management of Earth observation satellites," European Journal of Operational Research, Elsevier, vol. 177(2), pages 750-762, March.
    3. J. Paul Brooks & Eva K. Lee, 2014. "Solving a Multigroup Mixed-Integer Programming-Based Constrained Discrimination Model," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 567-585, August.
    4. Álvaro Porras & Concepción Domínguez & Juan Miguel Morales & Salvador Pineda, 2023. "Tight and Compact Sample Average Approximation for Joint Chance-Constrained Problems with Applications to Optimal Power Flow," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1454-1469, November.
    5. Wei, Ningji & Walteros, Jose L., 2022. "Integer programming methods for solving binary interdiction games," European Journal of Operational Research, Elsevier, vol. 302(2), pages 456-469.
    6. Zhang Ye & Hu Xiaoxuan & Zhu Waiming & Jin Peng, 2018. "Solving the Observing and Downloading Integrated Scheduling Problem of Earth Observation Satellite with a Quantum Genetic Algorithm," Journal of Systems Science and Information, De Gruyter, vol. 6(5), pages 399-420, October.
    7. Christopher Hojny & Tristan Gally & Oliver Habeck & Hendrik Lüthen & Frederic Matter & Marc E. Pfetsch & Andreas Schmitt, 2020. "Knapsack polytopes: a survey," Annals of Operations Research, Springer, vol. 292(1), pages 469-517, September.
    8. Kai Yang & Cong Tian & Nan Zhang & Zhenhua Duan & Hongwei Du, 2019. "A temporal logic programming approach to planning," Journal of Combinatorial Optimization, Springer, vol. 38(2), pages 402-420, August.
    9. Tangpattanakul, Panwadee & Jozefowiez, Nicolas & Lopez, Pierre, 2015. "A multi-objective local search heuristic for scheduling Earth observations taken by an agile satellite," European Journal of Operational Research, Elsevier, vol. 245(2), pages 542-554.
    10. Boland, Natashia & Charkhgard, Hadi & Savelsbergh, Martin, 2019. "Preprocessing and cut generation techniques for multi-objective binary programming," European Journal of Operational Research, Elsevier, vol. 274(3), pages 858-875.
    11. G Appa & D Magos & I Mourtos, 2004. "A Branch & Cut algorithm for a four-index assignment problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(3), pages 298-307, March.
    12. Hao, Jin-Kao & Benlic, Una, 2011. "Lower bounds for the ITC-2007 curriculum-based course timetabling problem," European Journal of Operational Research, Elsevier, vol. 212(3), pages 464-472, August.
    13. Andriy Shapoval & Eva K. Lee, 2021. "Generalizing 0-1 conflict hypergraphs and mixed conflict graphs: mixed conflict hypergraphs in discrete optimization," Journal of Global Optimization, Springer, vol. 80(4), pages 805-840, August.
    14. Nicolas Dupin, 2017. "Tighter MIP formulations for the discretised unit commitment problem with min-stop ramping constraints," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 149-176, March.
    15. Tuomas Sandholm & Subhash Suri & Andrew Gilpin & David Levine, 2005. "CABOB: A Fast Optimal Algorithm for Winner Determination in Combinatorial Auctions," Management Science, INFORMS, vol. 51(3), pages 374-390, March.
    16. Jeff T. Linderoth & Eva K. Lee & Martin W. P. Savelsbergh, 2001. "A Parallel, Linear Programming-based Heuristic for Large-Scale Set Partitioning Problems," INFORMS Journal on Computing, INFORMS, vol. 13(3), pages 191-209, August.
    17. Anantaram Balakrishnan & Gang Li & Prakash Mirchandani, 2017. "Optimal Network Design with End-to-End Service Requirements," Operations Research, INFORMS, vol. 65(3), pages 729-750, June.
    18. Alexandre Salles Cunha, 2022. "Improved formulations and branch-and-cut algorithms for the angular constrained minimum spanning tree problem," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 379-413, August.
    19. Pedro A. Castillo Castillo & Pedro M. Castro & Vladimir Mahalec, 2018. "Global optimization of MIQCPs with dynamic piecewise relaxations," Journal of Global Optimization, Springer, vol. 71(4), pages 691-716, August.
    20. Tobias Achterberg & Robert E. Bixby & Zonghao Gu & Edward Rothberg & Dieter Weninger, 2020. "Presolve Reductions in Mixed Integer Programming," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 473-506, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:20:y:2010:i:4:d:10.1007_s10878-009-9215-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.