IDEAS home Printed from https://ideas.repec.org/a/spr/fuzodm/v20y2021i4d10.1007_s10700-021-09350-3.html
   My bibliography  Save this article

Incremental maintenance of discovered fuzzy association rules

Author

Listed:
  • A. Pérez-Alonso

    (Universidad Técnica Federico Santa María)

  • I. J. Blanco

    (University of Granada)

  • J. M. Serrano

    (University of Jaén)

  • L. M. González-González

    (University “Marta Abreu” of Las Villas)

Abstract

Fuzzy association rules (FARs) are a recognized model to study existing relations among data, commonly stored in data repositories. In real-world applications, transactions are continuously processed with upcoming new data, rendering the discovered rules information inexact or obsolete in a short time. Incremental mining methods arise to avoid re-runs of those algorithms from scratch by re-using information that is systematically maintained. These methods are useful for extracting knowledge in dynamic environments. However, executing the algorithms only to maintain previously discovered information creates inefficiencies in real-time decision support systems. In this paper, two active algorithms are proposed for incremental maintenance of previously discovered FARs, inspired by efficient methods for change computation. The application of a generic form of measures in these algorithms allows the maintenance of a wide number of metrics simultaneously. We also propose to compute data operations in real-time, in order to create a reduced relevant instance set. The algorithms presented do not discover new knowledge; they are just created to efficiently maintain valuable information previously extracted, ready for decision making. Experimental results on education data and repository data sets show that our methods achieve a good performance. In fact, they can significantly improve traditional mining, incremental mining, and a naïve approach.

Suggested Citation

  • A. Pérez-Alonso & I. J. Blanco & J. M. Serrano & L. M. González-González, 2021. "Incremental maintenance of discovered fuzzy association rules," Fuzzy Optimization and Decision Making, Springer, vol. 20(4), pages 429-449, December.
  • Handle: RePEc:spr:fuzodm:v:20:y:2021:i:4:d:10.1007_s10700-021-09350-3
    DOI: 10.1007/s10700-021-09350-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10700-021-09350-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10700-021-09350-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lenca, Philippe & Meyer, Patrick & Vaillant, Benoit & Lallich, Stephane, 2008. "On selecting interestingness measures for association rules: User oriented description and multiple criteria decision aid," European Journal of Operational Research, Elsevier, vol. 184(2), pages 610-626, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xin & Liu, Xiaodong & Pedrycz, Witold & Zhu, Xiaolei & Hu, Guangfei, 2012. "Mining axiomatic fuzzy set association rules for classification problems," European Journal of Operational Research, Elsevier, vol. 218(1), pages 202-210.
    2. Rocco, Claudio M. & Hernandez-Perdomo, Elvis & Mun, Johnathan, 2020. "Introduction to formal concept analysis and its applications in reliability engineering," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    3. Chakhar, Salem & Ishizaka, Alessio & Thorpe, Andy & Cox, Joe & Nguyen, Thang & Ford, Liz, 2020. "Calculating the relative importance of condition attributes based on the characteristics of decision rules and attribute reducts: Application to crowdfunding," European Journal of Operational Research, Elsevier, vol. 286(2), pages 689-712.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fuzodm:v:20:y:2021:i:4:d:10.1007_s10700-021-09350-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.