IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v207y2010i2p807-816.html
   My bibliography  Save this article

Adaptive neural network model for time-series forecasting

Author

Listed:
  • Wong, W.K.
  • Xia, Min
  • Chu, W.C.

Abstract

In this study, a novel adaptive neural network (ADNN) with the adaptive metrics of inputs and a new mechanism for admixture of outputs is proposed for time-series prediction. The adaptive metrics of inputs can solve the problems of amplitude changing and trend determination, and avoid the over-fitting of networks. The new mechanism for admixture of outputs can adjust forecasting results by the relative error and make them more accurate. The proposed ADNN method can predict periodical time-series with a complicated structure. The experimental results show that the proposed model outperforms the auto-regression (AR), artificial neural network (ANN), and adaptive k-nearest neighbors (AKN) models. The ADNN model is proved to benefit from the merits of the ANN and the AKN through its' novel structure with high robustness particularly for both chaotic and real time-series predictions.

Suggested Citation

  • Wong, W.K. & Xia, Min & Chu, W.C., 2010. "Adaptive neural network model for time-series forecasting," European Journal of Operational Research, Elsevier, vol. 207(2), pages 807-816, December.
  • Handle: RePEc:eee:ejores:v:207:y:2010:i:2:p:807-816
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00378-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Makridakis, Spyros, 1996. "Reply to comments on "Forecasting: its role and value for planning and strategy"," International Journal of Forecasting, Elsevier, vol. 12(4), pages 555-557, December.
    2. Makridakis, Spyros, 1996. "Forecasting: its role and value for planning and strategy," International Journal of Forecasting, Elsevier, vol. 12(4), pages 513-537, December.
    3. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    4. Polterovich, Victor & Popov, Vladimir, 2006. "Эволюционная Теория Экономической Политики: Часть I: Опыт Быстрого Развития [An Evolutionary Theory of Economic Policy: Part I: The Experience of Fast Development]," MPRA Paper 22168, University Library of Munich, Germany.
    5. Bodyanskiy, Yevgeniy & Popov, Sergiy, 2006. "Neural network approach to forecasting of quasiperiodic financial time series," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1357-1366, December.
    6. Zhang, G. Peter & Qi, Min, 2005. "Neural network forecasting for seasonal and trend time series," European Journal of Operational Research, Elsevier, vol. 160(2), pages 501-514, January.
    7. Freitas, Paulo S.A. & Rodrigues, Antonio J.L., 2006. "Model combination in neural-based forecasting," European Journal of Operational Research, Elsevier, vol. 173(3), pages 801-814, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi-Ting Chen & Edward W. Sun & Yi-Bing Lin, 2020. "Machine learning with parallel neural networks for analyzing and forecasting electricity demand," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 569-597, August.
    2. Cang, Shuang & Yu, Hongnian, 2014. "A combination selection algorithm on forecasting," European Journal of Operational Research, Elsevier, vol. 234(1), pages 127-139.
    3. Jying-Nan Wang & Jiangze Du & Chonghui Jiang & Kin-Keung Lai, 2019. "Chinese Currency Exchange Rates Forecasting with EMD-Based Neural Network," Complexity, Hindawi, vol. 2019, pages 1-15, October.
    4. Mihaela SIMIONESCU, 2015. "The Accuracy Of Exchange Rate Forecasts In Romania," Journal of Social and Economic Statistics, Bucharest University of Economic Studies, vol. 4(1), pages 54-64, JULY.
    5. Tsai, Ming-Feng & Wang, Chuan-Ju, 2017. "On the risk prediction and analysis of soft information in finance reports," European Journal of Operational Research, Elsevier, vol. 257(1), pages 243-250.
    6. Xiaobing Yu, 2017. "Disaster prediction model based on support vector machine for regression and improved differential evolution," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 959-976, January.
    7. Jiang, Yu & Song, Zhe & Kusiak, Andrew, 2013. "Very short-term wind speed forecasting with Bayesian structural break model," Renewable Energy, Elsevier, vol. 50(C), pages 637-647.
    8. Bozos, Konstantinos & Nikolopoulos, Konstantinos, 2011. "Forecasting the value effect of seasoned equity offering announcements," European Journal of Operational Research, Elsevier, vol. 214(2), pages 418-427, October.
    9. Erdem Doğan, 2020. "Analysis of the relationship between LSTM network traffic flow prediction performance and statistical characteristics of standard and nonstandard data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1213-1228, December.
    10. Carrizosa, Emilio & Olivares-Nadal, Alba V. & Ramírez-Cobo, Pepa, 2013. "Time series interpolation via global optimization of moments fitting," European Journal of Operational Research, Elsevier, vol. 230(1), pages 97-112.
    11. Zhang, Mingzhu & He, Changzheng & Gu, Xin & Liatsis, Panos & Zhu, Bing, 2013. "D-GMDH: A novel inductive modelling approach in the forecasting of the industrial economy," Economic Modelling, Elsevier, vol. 30(C), pages 514-520.
    12. Waddah Waheeb & Rozaida Ghazali & Tutut Herawan, 2016. "Ridge Polynomial Neural Network with Error Feedback for Time Series Forecasting," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-34, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bozos, Konstantinos & Nikolopoulos, Konstantinos, 2011. "Forecasting the value effect of seasoned equity offering announcements," European Journal of Operational Research, Elsevier, vol. 214(2), pages 418-427, October.
    2. Cang, Shuang & Yu, Hongnian, 2014. "A combination selection algorithm on forecasting," European Journal of Operational Research, Elsevier, vol. 234(1), pages 127-139.
    3. Abdoulaye Camara & Wang Feixing & Liu Xiuqin, 2016. "Energy Consumption Forecasting Using Seasonal ARIMA with Artificial Neural Networks Models," International Journal of Business and Management, Canadian Center of Science and Education, vol. 11(5), pages 231-231, April.
    4. Lin, Yao-San & Li, Der-Chiang, 2010. "The Generalized-Trend-Diffusion modeling algorithm for small data sets in the early stages of manufacturing systems," European Journal of Operational Research, Elsevier, vol. 207(1), pages 121-130, November.
    5. Fischer, Ilan & Sullivan, Oriel, 2007. "Evolutionary modeling of time-use vectors," Journal of Economic Behavior & Organization, Elsevier, vol. 62(1), pages 120-143, January.
    6. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    7. Nataša Glišović & Miloš Milenković & Nebojša Bojović & Libor Švadlenka & Zoran Avramović, 2016. "A hybrid model for forecasting the volume of passenger flows on Serbian railways," Operational Research, Springer, vol. 16(2), pages 271-285, July.
    8. Fildes, Robert & Bretschneider, Stuart & Collopy, Fred & Lawrence, Michael & Stewart, Doug & Winklhofer, Heidi & Mentzer, John T. & Moon, Mark A., 2003. "Researching Sales Forecasting Practice: Commentaries and authors' response on "Conducting a Sales Forecasting Audit" by M.A. Moon, J.T. Mentzer & C.D. Smith," International Journal of Forecasting, Elsevier, vol. 19(1), pages 27-42.
    9. Long Wen & Chang Liu & Haiyan Song, 2019. "Forecasting tourism demand using search query data: A hybrid modelling approach," Tourism Economics, , vol. 25(3), pages 309-329, May.
    10. Icaro Romolo Sousa Agostino & Wesley Vieira da Silva & Claudimar Pereira da Veiga & Adriano Mendonça Souza, 2020. "Forecasting models in the manufacturing processes and operations management: Systematic literature review," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1043-1056, November.
    11. Soolmaz L. Azarmi & Akeem Adeyemi Oladipo & Roozbeh Vaziri & Habib Alipour, 2018. "Comparative Modelling and Artificial Neural Network Inspired Prediction of Waste Generation Rates of Hospitality Industry: The Case of North Cyprus," Sustainability, MDPI, vol. 10(9), pages 1-18, August.
    12. Tsai, Ming-Feng & Wang, Chuan-Ju, 2017. "On the risk prediction and analysis of soft information in finance reports," European Journal of Operational Research, Elsevier, vol. 257(1), pages 243-250.
    13. Oscar Claveria & Enric Monte & Salvador Torra, 2016. "Modelling cross-dependencies between Spain’s regional tourism markets with an extension of the Gaussian process regression model," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(3), pages 341-357, August.
    14. Fischer, Thomas & Krauss, Christopher & Treichel, Alex, 2018. "Machine learning for time series forecasting - a simulation study," FAU Discussion Papers in Economics 02/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    15. Abdurrahman M. Yazan, 2016. "Methods Used in Future Technology Analysis and its Selection: an application to VTOL transportation system," IET Working Papers Series 03/2016, Universidade Nova de Lisboa, IET/CICS.NOVA-Interdisciplinary Centre on Social Sciences, Faculty of Science and Technology.
    16. Jeong, Kwangbok & Koo, Choongwan & Hong, Taehoon, 2014. "An estimation model for determining the annual energy cost budget in educational facilities using SARIMA (seasonal autoregressive integrated moving average) and ANN (artificial neural network)," Energy, Elsevier, vol. 71(C), pages 71-79.
    17. Semenoglou, Artemios-Anargyros & Spiliotis, Evangelos & Makridakis, Spyros & Assimakopoulos, Vassilios, 2021. "Investigating the accuracy of cross-learning time series forecasting methods," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1072-1084.
    18. Mark T. Leung & An‐Sing Chen & Ruben Mancha, 2009. "Making trading decisions for financial‐engineered derivatives: a novel ensemble of neural networks using information content," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 16(4), pages 257-277, October.
    19. Grinyer, Peter H., 1996. "Comments on "Forecasting: its role and value for planning and strategy" by Spyros Makridakis," International Journal of Forecasting, Elsevier, vol. 12(4), pages 546-550, December.
    20. Oscar Claveria & Enric Monte & Salvador Torra, 2014. "“A multivariate neural network approach to tourism demand forecasting”," AQR Working Papers 201410, University of Barcelona, Regional Quantitative Analysis Group, revised May 2014.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:207:y:2010:i:2:p:807-816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.