IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v175y2006i3p1357-1366.html
   My bibliography  Save this article

Neural network approach to forecasting of quasiperiodic financial time series

Author

Listed:
  • Bodyanskiy, Yevgeniy
  • Popov, Sergiy

Abstract

No abstract is available for this item.

Suggested Citation

  • Bodyanskiy, Yevgeniy & Popov, Sergiy, 2006. "Neural network approach to forecasting of quasiperiodic financial time series," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1357-1366, December.
  • Handle: RePEc:eee:ejores:v:175:y:2006:i:3:p:1357-1366
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(05)00173-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Bao & Jun Yue & Yulei Rao, 2017. "A deep learning framework for financial time series using stacked autoencoders and long-short term memory," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-24, July.
    2. Alexander Vlasenko & Nataliia Vlasenko & Olena Vynokurova & Dmytro Peleshko, 2018. "A Novel Neuro-Fuzzy Model for Multivariate Time-Series Prediction," Data, MDPI, vol. 3(4), pages 1-14, December.
    3. Cang, Shuang & Yu, Hongnian, 2014. "A combination selection algorithm on forecasting," European Journal of Operational Research, Elsevier, vol. 234(1), pages 127-139.
    4. Mark T. Leung & An‐Sing Chen & Ruben Mancha, 2009. "Making trading decisions for financial‐engineered derivatives: a novel ensemble of neural networks using information content," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 16(4), pages 257-277, October.
    5. Bozos, Konstantinos & Nikolopoulos, Konstantinos, 2011. "Forecasting the value effect of seasoned equity offering announcements," European Journal of Operational Research, Elsevier, vol. 214(2), pages 418-427, October.
    6. Lukas Ryll & Sebastian Seidens, 2019. "Evaluating the Performance of Machine Learning Algorithms in Financial Market Forecasting: A Comprehensive Survey," Papers 1906.07786, arXiv.org, revised Jul 2019.
    7. Daniel Vela, 2013. "Forecasting Latin-American yield curves: An artificial neural network approach," Borradores de Economia 10502, Banco de la Republica.
    8. Saâdaoui, Foued, 2023. "Skewed multifractal scaling of stock markets during the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    9. Abdoulaye Camara & Wang Feixing & Liu Xiuqin, 2016. "Energy Consumption Forecasting Using Seasonal ARIMA with Artificial Neural Networks Models," International Journal of Business and Management, Canadian Center of Science and Education, vol. 11(5), pages 231-231, April.
    10. Daniel Vela, 2013. "Forecasting Latin-American yield curves: An artificial neural network approach," Borradores de Economia 761, Banco de la Republica de Colombia.
    11. Lin, Yao-San & Li, Der-Chiang, 2010. "The Generalized-Trend-Diffusion modeling algorithm for small data sets in the early stages of manufacturing systems," European Journal of Operational Research, Elsevier, vol. 207(1), pages 121-130, November.
    12. Wong, W.K. & Xia, Min & Chu, W.C., 2010. "Adaptive neural network model for time-series forecasting," European Journal of Operational Research, Elsevier, vol. 207(2), pages 807-816, December.
    13. Ünsal-Altuncan, Izel & Vanhoucke, Mario, 2024. "A hybrid forecasting model to predict the duration and cost performance of projects with Bayesian Networks," European Journal of Operational Research, Elsevier, vol. 315(2), pages 511-527.
    14. Tsai, Ming-Feng & Wang, Chuan-Ju, 2017. "On the risk prediction and analysis of soft information in finance reports," European Journal of Operational Research, Elsevier, vol. 257(1), pages 243-250.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:175:y:2006:i:3:p:1357-1366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.