IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v93y2020icp301-314.html
   My bibliography  Save this article

Expected utility approximation and portfolio optimisation

Author

Listed:
  • Fahrenwaldt, Matthias A.
  • Sun, Chaofan

Abstract

Classical portfolio selection problems that optimise expected utility can usually not be solved in closed form. It is natural to approximate the utility function, and we investigate the accuracy of this approximation when using Taylor polynomials. In the important case of a Merton market and power utility we show analytically that increasing the order of the polynomial does not necessarily improve the approximation of the expected utility. The proofs use methods from the theory of parabolic second-order partial differential equations. All results are illustrated by numerical examples.

Suggested Citation

  • Fahrenwaldt, Matthias A. & Sun, Chaofan, 2020. "Expected utility approximation and portfolio optimisation," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 301-314.
  • Handle: RePEc:eee:insuma:v:93:y:2020:i:c:p:301-314
    DOI: 10.1016/j.insmatheco.2020.05.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668720300779
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2020.05.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael W. Brandt & Amit Goyal & Pedro Santa-Clara & Jonathan R. Stroud, 2005. "A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 831-873.
    2. Hlawitschka, Walter, 1994. "The Empirical Nature of Taylor-Series Approximations to Expected Utility," American Economic Review, American Economic Association, vol. 84(3), pages 713-719, June.
    3. Eric Jondeau & Michael Rockinger, 2006. "Optimal Portfolio Allocation under Higher Moments," European Financial Management, European Financial Management Association, vol. 12(1), pages 29-55, January.
    4. Georgios Skoulakis, 2012. "On the quality of Taylor approximations to expected utility," Applied Financial Economics, Taylor & Francis Journals, vol. 22(11), pages 863-876, June.
    5. Loistl, Otto, 1976. "The Erroneous Approximation of Expected Utility by Means of a Taylor's Series Expansion: Analytic and Computational Results," American Economic Review, American Economic Association, vol. 66(5), pages 904-910, December.
    6. Paul A. Samuelson, 1970. "The Fundamental Approximation Theorem of Portfolio Analysis in terms of Means, Variances and Higher Moments," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 37(4), pages 537-542.
    7. Donnelly, Catherine & Gerrard, Russell & Guillén, Montserrat & Nielsen, Jens Perch, 2015. "Less is more: Increasing retirement gains by using an upside terminal wealth constraint," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 259-267.
    8. Ma, Jin & Zhang, Jianfeng, 2005. "Representations and regularities for solutions to BSDEs with reflections," Stochastic Processes and their Applications, Elsevier, vol. 115(4), pages 539-569, April.
    9. Thomas Bernhardt & Catherine Donnelly, 2019. "Modern tontine with bequest: innovation in pooled annuity products," Papers 1903.05990, arXiv.org.
    10. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    11. Tsiang, S C, 1972. "The Rationale of the Mean-Standard Deviation Analysis, Skewness Preference, and the Demand for Money," American Economic Review, American Economic Association, vol. 62(3), pages 354-371, June.
    12. Bernhardt, Thomas & Donnelly, Catherine, 2019. "Modern tontine with bequest: Innovation in pooled annuity products," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 168-188.
    13. Fei Cong & Cornelis W. Oosterlee, 2017. "Accurate and Robust Numerical Methods for the Dynamic Portfolio Management Problem," Computational Economics, Springer;Society for Computational Economics, vol. 49(3), pages 433-458, March.
    14. Lawrence B. Pulley, 1983. "Mean-Variance Approximations to Expected Logarithmic Utility," Operations Research, INFORMS, vol. 31(4), pages 685-696, August.
    15. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    16. Steffensen, Mogens, 2004. "On Merton’s Problem for Life Insurers," ASTIN Bulletin, Cambridge University Press, vol. 34(1), pages 5-25, May.
    17. Catherine Donnelly & Russell Gerrard & Montserrat Guillén & Jens Perch Nielsen, 2015. "Less is more: increasing retirement gains by using an upside terminal wealth constraint," Working Papers 2015-02, Universitat de Barcelona, UB Riskcenter.
    18. Levy, H & Markowtiz, H M, 1979. "Approximating Expected Utility by a Function of Mean and Variance," American Economic Review, American Economic Association, vol. 69(3), pages 308-317, June.
    19. Patrick L. Brockett & James R. Garven, 1998. "A Reexamination of the Relationship Between Preferences and Moment Orderings by Rational Risk-Averse Investors," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 23(2), pages 127-137, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benjamin Avanzi & Hayden Lau & Mogens Steffensen, 2022. "Optimal reinsurance design under solvency constraints," Papers 2203.16108, arXiv.org, revised Jun 2023.
    2. Ronald Ravinesh Kumar & Peter Josef Stauvermann, 2022. "Portfolios under Different Methods and Scenarios: A Case of Fiji’s South Pacific Stock Exchange," JRFM, MDPI, vol. 15(12), pages 1-27, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monica Billio & Bertrand Maillet & Loriana Pelizzon, 2022. "A meta-measure of performance related to both investors and investments characteristics," Annals of Operations Research, Springer, vol. 313(2), pages 1405-1447, June.
    2. Emmanuel Jurczenko & Bertrand Maillet & Paul Merlin, 2008. "Efficient Frontier for Robust Higher-order Moment Portfolio Selection," Post-Print halshs-00336475, HAL.
    3. Eric Jondeau & Michael Rockinger, 2006. "Optimal Portfolio Allocation under Higher Moments," European Financial Management, European Financial Management Association, vol. 12(1), pages 29-55, January.
    4. Briec, Walter & Kerstens, Kristiaan, 2010. "Portfolio selection in multidimensional general and partial moment space," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 636-656, April.
    5. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    6. Wang, Chou-Wen & Liu, Kai & Li, Bin & Tan, Ken Seng, 2022. "Portfolio optimization under multivariate affine generalized hyperbolic distributions," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 49-66.
    7. Markowitz, Harry, 2014. "Mean–variance approximations to expected utility," European Journal of Operational Research, Elsevier, vol. 234(2), pages 346-355.
    8. Guo, Xu & Lien, Donald & Wong, Wing-Keung, 2015. "Good Approximation of Exponential Utility Function for Optimal Futures Hedging," MPRA Paper 66841, University Library of Munich, Germany.
    9. David S. Jones & V. Vance Roley, 1981. "Bliss Points in Mean-Variance Portfolio Models," NBER Technical Working Papers 0019, National Bureau of Economic Research, Inc.
    10. Petsakos, Athanasios & Rozakis, Stelios, 2015. "Calibration of agricultural risk programming models," European Journal of Operational Research, Elsevier, vol. 242(2), pages 536-545.
    11. Chunhachinda, Pornchai & Dandapani, Krishnan & Hamid, Shahid & Prakash, Arun J., 1997. "Portfolio selection and skewness: Evidence from international stock markets," Journal of Banking & Finance, Elsevier, vol. 21(2), pages 143-167, February.
    12. Zhu, Yichen & Escobar-Anel, Marcos, 2022. "Polynomial affine approach to HARA utility maximization with applications to OrnsteinUhlenbeck 4/2 models," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    13. Eric Jondeau & Michael Rockinger, 2005. "Conditional Asset Allocation under Non-Normality: How Costly is the Mean-Variance Criterion?," FAME Research Paper Series rp132, International Center for Financial Asset Management and Engineering.
    14. Nalpas, Nicolas & Simar, Leopold & Vanhems, Anne, 2016. "Portfolio Selection in a Multi-Input Multi-Output Setting:a Simple Monte-Carlo-FDH Algorithm," LIDAM Discussion Papers ISBA 2016022, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Bigman, David, 1995. "Approximation methods for ranking risky investment alternatives," Agricultural Economics, Blackwell, vol. 12(1), pages 1-9, April.
    16. An Chen & Thai Nguyen & Thorsten Sehner, 2022. "Unit-Linked Tontine: Utility-Based Design, Pricing and Performance," Risks, MDPI, vol. 10(4), pages 1-27, April.
    17. Hong‐Chih Huang, 2010. "Optimal Multiperiod Asset Allocation: Matching Assets to Liabilities in a Discrete Model," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(2), pages 451-472, June.
    18. Marcos Escobar-Anel & Michel Kschonnek & Rudi Zagst, 2022. "Portfolio optimization: not necessarily concave utility and constraints on wealth and allocation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(1), pages 101-140, February.
    19. Prakash, Arun J. & Chang, Chun-Hao & Pactwa, Therese E., 2003. "Selecting a portfolio with skewness: Recent evidence from US, European, and Latin American equity markets," Journal of Banking & Finance, Elsevier, vol. 27(7), pages 1375-1390, July.
    20. Kassimatis, Konstantinos, 2021. "Mean-variance versus utility maximization revisited: The case of constant relative risk aversion," International Review of Financial Analysis, Elsevier, vol. 78(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:93:y:2020:i:c:p:301-314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.