IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v199y2009i1p111-116.html
   My bibliography  Save this article

Two simple constant ratio approximation algorithms for minimizing the total weighted completion time on a single machine with a fixed non-availability interval

Author

Listed:
  • Kellerer, Hans
  • Kubzin, Mikhail A.
  • Strusevich, Vitaly A.

Abstract

In this note, we consider the scheduling problem of minimizing the sum of the weighted completion times on a single machine with one non-availability interval on the machine under the non-resumable scenario. Together with a recent 2-approximation algorithm designed by Kacem [I. Kacem, Approximation algorithm for the weighted flow-time minimization on a single machine with a fixed non-availability interval, Computers & Industrial Engineering 54 (2008) 401-410], this paper is the first successful attempt to develop a constant ratio approximation algorithm for this problem. We present two approaches to designing such an algorithm. Our best algorithm guarantees a worst-case performance ratio of 2+[epsilon].

Suggested Citation

  • Kellerer, Hans & Kubzin, Mikhail A. & Strusevich, Vitaly A., 2009. "Two simple constant ratio approximation algorithms for minimizing the total weighted completion time on a single machine with a fixed non-availability interval," European Journal of Operational Research, Elsevier, vol. 199(1), pages 111-116, November.
  • Handle: RePEc:eee:ejores:v:199:y:2009:i:1:p:111-116
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00979-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kacem, Imed & Chu, Chengbin, 2008. "Worst-case analysis of the WSPT and MWSPT rules for single machine scheduling with one planned setup period," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1080-1089, June.
    2. Guoqing Wang & Hongyi Sun & Chengbin Chu, 2005. "Preemptive Scheduling with Availability Constraints to Minimize Total Weighted Completion Times," Annals of Operations Research, Springer, vol. 133(1), pages 183-192, January.
    3. Kacem, Imed & Chu, Chengbin, 2008. "Efficient branch-and-bound algorithm for minimizing the weighted sum of completion times on a single machine with one availability constraint," International Journal of Production Economics, Elsevier, vol. 112(1), pages 138-150, March.
    4. Breit, Joachim, 2007. "Improved approximation for non-preemptive single machine flow-time scheduling with an availability constraint," European Journal of Operational Research, Elsevier, vol. 183(2), pages 516-524, December.
    5. Sadfi, Cherif & Penz, Bernard & Rapine, Christophe & Blazewicz, Jacek & Formanowicz, Piotr, 2005. "An improved approximation algorithm for the single machine total completion time scheduling problem with availability constraints," European Journal of Operational Research, Elsevier, vol. 161(1), pages 3-10, February.
    6. Hans Kellerer & Ulrich Pferschy, 1999. "A New Fully Polynomial Time Approximation Scheme for the Knapsack Problem," Journal of Combinatorial Optimization, Springer, vol. 3(1), pages 59-71, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tan, Zhiyi & Chen, Yong & Zhang, An, 2011. "Parallel machines scheduling with machine maintenance for minsum criteria," European Journal of Operational Research, Elsevier, vol. 212(2), pages 287-292, July.
    2. Hans Kellerer & Vitaly A. Strusevich, 2016. "Optimizing the half-product and related quadratic Boolean functions: approximation and scheduling applications," Annals of Operations Research, Springer, vol. 240(1), pages 39-94, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hans Kellerer & Vitaly A. Strusevich, 2016. "Optimizing the half-product and related quadratic Boolean functions: approximation and scheduling applications," Annals of Operations Research, Springer, vol. 240(1), pages 39-94, May.
    2. Shabtay, Dvir & Zofi, Moshe, 2018. "Single machine scheduling with controllable processing times and an unavailability period to minimize the makespan," International Journal of Production Economics, Elsevier, vol. 198(C), pages 191-200.
    3. Hanane Krim & Rachid Benmansour & David Duvivier & Daoud Aït-Kadi & Said Hanafi, 2020. "Heuristics for the single machine weighted sum of completion times scheduling problem with periodic maintenance," Computational Optimization and Applications, Springer, vol. 75(1), pages 291-320, January.
    4. Zhenpeng Li & Congdian Cheng, 2023. "The Expected Competitive Ratio on a Kind of Stochastic-Online Flowtime Scheduling with Machine Subject to an Uncertain Breakdown," Mathematics, MDPI, vol. 11(11), pages 1-12, May.
    5. Shabtay, Dvir, 2022. "Single-machine scheduling with machine unavailability periods and resource dependent processing times," European Journal of Operational Research, Elsevier, vol. 296(2), pages 423-439.
    6. Kacem, Imed & Chu, Chengbin, 2008. "Efficient branch-and-bound algorithm for minimizing the weighted sum of completion times on a single machine with one availability constraint," International Journal of Production Economics, Elsevier, vol. 112(1), pages 138-150, March.
    7. Jing Fan & Xiwen Lu, 2015. "Supply chain scheduling problem in the hospital with periodic working time on a single machine," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 892-905, November.
    8. Mellouli, Racem & Sadfi, Chrif & Chu, Chengbin & Kacem, Imed, 2009. "Identical parallel-machine scheduling under availability constraints to minimize the sum of completion times," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1150-1165, September.
    9. Yunqiang Yin & Jianyou Xu & T. C. E. Cheng & Chin‐Chia Wu & Du‐Juan Wang, 2016. "Approximation schemes for single‐machine scheduling with a fixed maintenance activity to minimize the total amount of late work," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(2), pages 172-183, March.
    10. Kerem Bülbül & Safia Kedad-Sidhoum & Halil Şen, 2019. "Single-machine common due date total earliness/tardiness scheduling with machine unavailability," Journal of Scheduling, Springer, vol. 22(5), pages 543-565, October.
    11. Baruch Mor & Dana Shapira, 2022. "Single machine scheduling with non-availability interval and optional job rejection," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 480-497, August.
    12. Shi-Sheng Li & Ren-Xia Chen, 2022. "Minimizing total weighted late work on a single-machine with non-availability intervals," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1330-1355, September.
    13. Kacem, Imed & Chu, Chengbin, 2008. "Worst-case analysis of the WSPT and MWSPT rules for single machine scheduling with one planned setup period," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1080-1089, June.
    14. Francisco Castillo-Zunino & Pinar Keskinocak, 2021. "Bi-criteria multiple knapsack problem with grouped items," Journal of Heuristics, Springer, vol. 27(5), pages 747-789, October.
    15. Xu, Zhou, 2012. "A strongly polynomial FPTAS for the symmetric quadratic knapsack problem," European Journal of Operational Research, Elsevier, vol. 218(2), pages 377-381.
    16. Tan, Zhiyi & Chen, Yong & Zhang, An, 2013. "On the exact bounds of SPT for scheduling on parallel machines with availability constraints," International Journal of Production Economics, Elsevier, vol. 146(1), pages 293-299.
    17. Imed Kacem, 2009. "Approximation algorithms for the makespan minimization with positive tails on a single machine with a fixed non-availability interval," Journal of Combinatorial Optimization, Springer, vol. 17(2), pages 117-133, February.
    18. Tan, Zhiyi & Chen, Yong & Zhang, An, 2011. "Parallel machines scheduling with machine maintenance for minsum criteria," European Journal of Operational Research, Elsevier, vol. 212(2), pages 287-292, July.
    19. Breit, Joachim, 2007. "Improved approximation for non-preemptive single machine flow-time scheduling with an availability constraint," European Journal of Operational Research, Elsevier, vol. 183(2), pages 516-524, December.
    20. Jooken, Jorik & Leyman, Pieter & De Causmaecker, Patrick, 2022. "A new class of hard problem instances for the 0–1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 841-854.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:199:y:2009:i:1:p:111-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.