IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v36y2002i2p218-230.html
   My bibliography  Save this article

A Heuristic Search Approach for a Nonstationary Stochastic Shortest Path Problem with Terminal Cost

Author

Listed:
  • James L. Bander

    (Industrial Engineering and Operations Research, Norfolk Southern Corporation, 600 West Peachtree Street NW, Suite 900, Atlanta, Georgia 30308)

  • Chelsea C. White

    (Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)

Abstract

We present a best-first heuristic search approach for determining an optimal policy for a stochastic shortest path problem. A vehicle is to travel from an origin, starting at time t 0 , to a destination, where once the destination is reached a terminal cost is accrued. The terminal cost depends on the time of arrival. Travel time along each arc in the network is modeled as a random variable with a distribution dependent on the time that travel along the arc is begun. The objective is to determine a routing policy that minimizes expected total cost. A routing policy is a rule that assigns the next arc to traverse, given the current node and time.The heuristic search algorithm that we specialize to this stochastic problem is AO * . We demonstrate the significant computational advantages of AO * , relative to dynamic programming, on the basis of run time and storage, using a 131-intersection network of the major roads in Cleveland, Ohio. Further computational experience is based on grid networks that were randomly generated to have characteristics similar to transportation networks, and on randomly generated unstructured networks.

Suggested Citation

  • James L. Bander & Chelsea C. White, 2002. "A Heuristic Search Approach for a Nonstationary Stochastic Shortest Path Problem with Terminal Cost," Transportation Science, INFORMS, vol. 36(2), pages 218-230, May.
  • Handle: RePEc:inm:ortrsc:v:36:y:2002:i:2:p:218-230
    DOI: 10.1287/trsc.36.2.218.562
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.36.2.218.562
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.36.2.218.562?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dimitri P. Bertsekas & John N. Tsitsiklis, 1991. "An Analysis of Stochastic Shortest Path Problems," Mathematics of Operations Research, INFORMS, vol. 16(3), pages 580-595, August.
    2. H. Frank, 1969. "Shortest Paths in Probabilistic Graphs," Operations Research, INFORMS, vol. 17(4), pages 583-599, August.
    3. Randolph W. Hall, 1986. "The Fastest Path through a Network with Random Time-Dependent Travel Times," Transportation Science, INFORMS, vol. 20(3), pages 182-188, August.
    4. Amir Eiger & Pitu B. Mirchandani & Hossein Soroush, 1985. "Path Preferences and Optimal Paths in Probabilistic Networks," Transportation Science, INFORMS, vol. 19(1), pages 75-84, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. N Shi & R K Cheung & H Xu & K K Lai, 2011. "An adaptive routing strategy for freight transportation networks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(4), pages 799-805, April.
    2. Gao, Song & Chabini, Ismail, 2006. "Optimal routing policy problems in stochastic time-dependent networks," Transportation Research Part B: Methodological, Elsevier, vol. 40(2), pages 93-122, February.
    3. Thomas, Barrett W. & White III, Chelsea C., 2007. "The dynamic shortest path problem with anticipation," European Journal of Operational Research, Elsevier, vol. 176(2), pages 836-854, January.
    4. Häme, Lauri & Hakula, Harri, 2013. "Dynamic journeying under uncertainty," European Journal of Operational Research, Elsevier, vol. 225(3), pages 455-471.
    5. Azadian, Farshid & Murat, Alper E. & Chinnam, Ratna Babu, 2012. "Dynamic routing of time-sensitive air cargo using real-time information," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 355-372.
    6. Levering, Nikki & Boon, Marko & Mandjes, Michel & Núñez-Queija, Rudesindo, 2022. "A framework for efficient dynamic routing under stochastically varying conditions," Transportation Research Part B: Methodological, Elsevier, vol. 160(C), pages 97-124.
    7. Vural Aksakalli & O. Furkan Sahin & Ibrahim Ari, 2016. "An AO* Based Exact Algorithm for the Canadian Traveler Problem," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 96-111, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yueyue Fan & Yu Nie, 2006. "Optimal Routing for Maximizing the Travel Time Reliability," Networks and Spatial Economics, Springer, vol. 6(3), pages 333-344, September.
    2. Elise D. Miller-Hooks & Hani S. Mahmassani, 2000. "Least Expected Time Paths in Stochastic, Time-Varying Transportation Networks," Transportation Science, INFORMS, vol. 34(2), pages 198-215, May.
    3. Huang, He & Gao, Song, 2012. "Optimal paths in dynamic networks with dependent random link travel times," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 579-598.
    4. Shahabi, Mehrdad & Unnikrishnan, Avinash & Boyles, Stephen D., 2013. "An outer approximation algorithm for the robust shortest path problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 58(C), pages 52-66.
    5. Azaron, Amir & Kianfar, Farhad, 2003. "Dynamic shortest path in stochastic dynamic networks: Ship routing problem," European Journal of Operational Research, Elsevier, vol. 144(1), pages 138-156, January.
    6. Axel Parmentier, 2019. "Algorithms for non-linear and stochastic resource constrained shortest path," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(2), pages 281-317, April.
    7. Levering, Nikki & Boon, Marko & Mandjes, Michel & Núñez-Queija, Rudesindo, 2022. "A framework for efficient dynamic routing under stochastically varying conditions," Transportation Research Part B: Methodological, Elsevier, vol. 160(C), pages 97-124.
    8. Nie, Yu (Marco) & Wu, Xing, 2009. "Shortest path problem considering on-time arrival probability," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 597-613, July.
    9. Raymond K. Cheung & B. Muralidharan, 2000. "Dynamic Routing for Priority Shipments in LTL Service Networks," Transportation Science, INFORMS, vol. 34(1), pages 86-98, February.
    10. Miller-Hooks, Elise & Mahmassani, Hani, 2003. "Path comparisons for a priori and time-adaptive decisions in stochastic, time-varying networks," European Journal of Operational Research, Elsevier, vol. 146(1), pages 67-82, April.
    11. Nie, Yu (Marco) & Wu, Xing & Dillenburg, John F. & Nelson, Peter C., 2012. "Reliable route guidance: A case study from Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(2), pages 403-419.
    12. Pretolani, Daniele, 2000. "A directed hypergraph model for random time dependent shortest paths," European Journal of Operational Research, Elsevier, vol. 123(2), pages 315-324, June.
    13. Matthias Ruß & Gunther Gust & Dirk Neumann, 2021. "The Constrained Reliable Shortest Path Problem in Stochastic Time-Dependent Networks," Operations Research, INFORMS, vol. 69(3), pages 709-726, May.
    14. Azadian, Farshid & Murat, Alper E. & Chinnam, Ratna Babu, 2012. "Dynamic routing of time-sensitive air cargo using real-time information," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 355-372.
    15. Taesung Hwang & Yanfeng Ouyang, 2015. "Urban Freight Truck Routing under Stochastic Congestion and Emission Considerations," Sustainability, MDPI, vol. 7(6), pages 1-16, May.
    16. Arthur Flajolet & Sébastien Blandin & Patrick Jaillet, 2018. "Robust Adaptive Routing Under Uncertainty," Operations Research, INFORMS, vol. 66(1), pages 210-229, January.
    17. Srinivasan, Karthik K. & Prakash, A.A. & Seshadri, Ravi, 2014. "Finding most reliable paths on networks with correlated and shifted log–normal travel times," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 110-128.
    18. Manseur, Farida & Farhi, Nadir & Nguyen Van Phu, Cyril & Haj-Salem, Habib & Lebacque, Jean-Patrick, 2020. "Robust routing, its price, and the tradeoff between routing robustness and travel time reliability in road networks," European Journal of Operational Research, Elsevier, vol. 285(1), pages 159-171.
    19. A. Arun Prakash & Karthik K. Srinivasan, 2018. "Pruning Algorithms to Determine Reliable Paths on Networks with Random and Correlated Link Travel Times," Transportation Science, INFORMS, vol. 52(1), pages 80-101, January.
    20. David Corredor-Montenegro & Nicolás Cabrera & Raha Akhavan-Tabatabaei & Andrés L. Medaglia, 2021. "On the shortest $$\alpha$$ α -reliable path problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 287-318, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:36:y:2002:i:2:p:218-230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.