IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v285y2020i1p148-158.html
   My bibliography  Save this article

The Stochastic Shortest Path Problem: A polyhedral combinatorics perspective

Author

Listed:
  • Guillot, Matthieu
  • Stauffer, Gautier

Abstract

In this paper, we give a new framework for the stochastic shortest path problem in finite state and action spaces. Our framework generalizes both the frameworks proposed by Bertsekas and Tsitsiklis (1991) and by Bertsekas and Yu (2016). We prove that the problem is well-defined and (weakly) polynomial when (i) there is a way to reach the target state from any initial state and (ii) there is no transition cycle of negative costs (a generalization of negative cost cycles). These assumptions generalize the standard assumptions for the deterministic shortest path problem and our framework encapsulates the latter problem (in contrast with prior works). In this new setting, we can show that (a) one can restrict to deterministic and stationary policies, (b) the problem is still (weakly) polynomial through linear programming, (c) Value Iteration and Policy Iteration converge, and (d) we can extend Dijkstra’s algorithm.

Suggested Citation

  • Guillot, Matthieu & Stauffer, Gautier, 2020. "The Stochastic Shortest Path Problem: A polyhedral combinatorics perspective," European Journal of Operational Research, Elsevier, vol. 285(1), pages 148-158.
  • Handle: RePEc:eee:ejores:v:285:y:2020:i:1:p:148-158
    DOI: 10.1016/j.ejor.2018.10.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718309202
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.10.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitri P. Bertsekas & John N. Tsitsiklis, 1991. "An Analysis of Stochastic Shortest Path Problems," Mathematics of Operations Research, INFORMS, vol. 16(3), pages 580-595, August.
    2. Eric V. Denardo, 1970. "On Linear Programming in a Markov Decision Problem," Management Science, INFORMS, vol. 16(5), pages 281-288, January.
    3. Alan S. Manne, 1960. "Linear Programming and Sequential Decisions," Management Science, INFORMS, vol. 6(3), pages 259-267, April.
    4. A. Hordijk & L. C. M. Kallenberg, 1979. "Linear Programming and Markov Decision Chains," Management Science, INFORMS, vol. 25(4), pages 352-362, April.
    5. Mary Melekopoglou & Anne Condon, 1994. "On the Complexity of the Policy Improvement Algorithm for Markov Decision Processes," INFORMS Journal on Computing, INFORMS, vol. 6(2), pages 188-192, May.
    6. Richard Bellman, 1957. "On a Dynamic Programming Approach to the Caterer Problem--I," Management Science, INFORMS, vol. 3(3), pages 270-278, April.
    7. Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-887, September.
    8. Yinyu Ye, 2011. "The Simplex and Policy-Iteration Methods Are Strongly Polynomial for the Markov Decision Problem with a Fixed Discount Rate," Mathematics of Operations Research, INFORMS, vol. 36(4), pages 593-603, November.
    9. Yinyu Ye, 2005. "A New Complexity Result on Solving the Markov Decision Problem," Mathematics of Operations Research, INFORMS, vol. 30(3), pages 733-749, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Jisun & Joung, Seulgi & Lee, Kyungsik, 2022. "A fully polynomial time approximation scheme for the probability maximizing shortest path problem," European Journal of Operational Research, Elsevier, vol. 300(1), pages 35-45.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yinyu Ye, 2011. "The Simplex and Policy-Iteration Methods Are Strongly Polynomial for the Markov Decision Problem with a Fixed Discount Rate," Mathematics of Operations Research, INFORMS, vol. 36(4), pages 593-603, November.
    2. B. Curtis Eaves & Arthur F. Veinott, 2014. "Maximum-Stopping-Value Policies in Finite Markov Population Decision Chains," Mathematics of Operations Research, INFORMS, vol. 39(3), pages 597-606, August.
    3. Michael O’Sullivan & Arthur F. Veinott, Jr., 2017. "Polynomial-Time Computation of Strong and n -Present-Value Optimal Policies in Markov Decision Chains," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 577-598, August.
    4. Ian Post & Yinyu Ye, 2015. "The Simplex Method is Strongly Polynomial for Deterministic Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 40(4), pages 859-868, October.
    5. Lodewijk Kallenberg, 2013. "Derman’s book as inspiration: some results on LP for MDPs," Annals of Operations Research, Springer, vol. 208(1), pages 63-94, September.
    6. David B. Brown & James E. Smith, 2013. "Optimal Sequential Exploration: Bandits, Clairvoyants, and Wildcats," Operations Research, INFORMS, vol. 61(3), pages 644-665, June.
    7. D. P. de Farias & B. Van Roy, 2003. "The Linear Programming Approach to Approximate Dynamic Programming," Operations Research, INFORMS, vol. 51(6), pages 850-865, December.
    8. Guy Even & Alexander Zadorojniy, 2012. "Strong polynomiality of the Gass-Saaty shadow-vertex pivoting rule for controlled random walks," Annals of Operations Research, Springer, vol. 201(1), pages 159-167, December.
    9. Dmitry Krass & O. J. Vrieze, 2002. "Achieving Target State-Action Frequencies in Multichain Average-Reward Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 27(3), pages 545-566, August.
    10. Archis Ghate & Robert L. Smith, 2013. "A Linear Programming Approach to Nonstationary Infinite-Horizon Markov Decision Processes," Operations Research, INFORMS, vol. 61(2), pages 413-425, April.
    11. Schachter, J.A. & Mancarella, P., 2016. "A critical review of Real Options thinking for valuing investment flexibility in Smart Grids and low carbon energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 261-271.
    12. K. Helmes & R. H. Stockbridge, 2000. "Numerical Comparison of Controls and Verification of Optimality for Stochastic Control Problems," Journal of Optimization Theory and Applications, Springer, vol. 106(1), pages 107-127, July.
    13. Horváth, Ferenc, 2017. "Essays on robust asset pricing," Other publications TiSEM e54d7b33-1f27-4b0e-9f84-f, Tilburg University, School of Economics and Management.
    14. Roberto Steri, 2015. "Collateral-Based Asset Pricing," 2015 Meeting Papers 293, Society for Economic Dynamics.
    15. Liu, Zeyu & Li, Xueping & Khojandi, Anahita, 2022. "The flying sidekick traveling salesman problem with stochastic travel time: A reinforcement learning approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    16. Alexander Zadorojniy & Guy Even & Adam Shwartz, 2009. "A Strongly Polynomial Algorithm for Controlled Queues," Mathematics of Operations Research, INFORMS, vol. 34(4), pages 992-1007, November.
    17. Mengdi Wang, 2020. "Randomized Linear Programming Solves the Markov Decision Problem in Nearly Linear (Sometimes Sublinear) Time," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 517-546, May.
    18. Tetsuichiro Iki & Masayuki Horiguchi & Masami Kurano, 2007. "A structured pattern matrix algorithm for multichain Markov decision processes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(3), pages 545-555, December.
    19. Cui, Tianxiang & Du, Nanjiang & Yang, Xiaoying & Ding, Shusheng, 2024. "Multi-period portfolio optimization using a deep reinforcement learning hyper-heuristic approach," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    20. Levering, Nikki & Boon, Marko & Mandjes, Michel & Núñez-Queija, Rudesindo, 2022. "A framework for efficient dynamic routing under stochastically varying conditions," Transportation Research Part B: Methodological, Elsevier, vol. 160(C), pages 97-124.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:285:y:2020:i:1:p:148-158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.