IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v195y2009i1p62-74.html
   My bibliography  Save this article

New convergent heuristics for 0-1 mixed integer programming

Author

Listed:
  • Wilbaut, Christophe
  • Hanafi, Said

Abstract

Several hybrid methods have recently been proposed for solving 0-1 mixed integer programming problems. Some of these methods are based on the complete exploration of small neighborhoods. In this paper, we present several convergent algorithms that solve a series of small sub-problems generated by exploiting information obtained from a series of relaxations. These algorithms generate a sequence of upper bounds and a sequence of lower bounds around the optimal value. First, the principle of a linear programming-based algorithm is summarized, and several enhancements of this algorithm are presented. Next, new hybrid heuristics that use linear programming and/or mixed integer programming relaxations are proposed. The mixed integer programming (MIP) relaxation diversifies the search process and introduces new constraints in the problem. This MIP relaxation also helps to reduce the gap between the final upper bound and lower bound. Our algorithms improved 14 best-known solutions from a set of 108 available and correlated instances of the 0-1 multidimensional Knapsack problem. Other encouraging results obtained for 0-1 MIP problems are also presented.

Suggested Citation

  • Wilbaut, Christophe & Hanafi, Said, 2009. "New convergent heuristics for 0-1 mixed integer programming," European Journal of Operational Research, Elsevier, vol. 195(1), pages 62-74, May.
  • Handle: RePEc:eee:ejores:v:195:y:2009:i:1:p:62-74
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00155-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hanafi, Said & Glover, Fred, 2007. "Exploiting nested inequalities and surrogate constraints," European Journal of Operational Research, Elsevier, vol. 179(1), pages 50-63, May.
    2. Soyster, A. L. & Lev, B. & Slivka, W., 1978. "Zero-one programming with many variables and few constraints," European Journal of Operational Research, Elsevier, vol. 2(3), pages 195-201, May.
    3. Vasquez, Michel & Vimont, Yannick, 2005. "Improved results on the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 165(1), pages 70-81, August.
    4. María Osorio & Fred Glover & Peter Hammer, 2002. "Cutting and Surrogate Constraint Analysis for Improved Multidimensional Knapsack Solutions," Annals of Operations Research, Springer, vol. 117(1), pages 71-93, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Renata Mansini & M. Grazia Speranza, 2012. "CORAL: An Exact Algorithm for the Multidimensional Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 399-415, August.
    2. Gendron, Bernard & Hanafi, Saïd & Todosijević, Raca, 2018. "Matheuristics based on iterative linear programming and slope scaling for multicommodity capacitated fixed charge network design," European Journal of Operational Research, Elsevier, vol. 268(1), pages 70-81.
    3. Chen, Yuning & Hao, Jin-Kao, 2014. "A “reduce and solve” approach for the multiple-choice multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 239(2), pages 313-322.
    4. Al-Shihabi, Sameh, 2021. "A Novel Core-Based Optimization Framework for Binary Integer Programs- the Multidemand Multidimesional Knapsack Problem as a Test Problem," Operations Research Perspectives, Elsevier, vol. 8(C).
    5. Saïd Hanafi & Raca Todosijević, 2017. "Mathematical programming based heuristics for the 0–1 MIP: a survey," Journal of Heuristics, Springer, vol. 23(4), pages 165-206, August.
    6. Ершов Д.М. & Кобылко А.А., 2015. "Выбор Комплексной Стратегии Предприятия С Учетом Сочетаемости Стратегических Решений," Журнал Экономика и математические методы (ЭММ), Центральный Экономико-Математический Институт (ЦЭМИ), vol. 51(1), pages 97-108, январь.
    7. Saïd Hanafi & Christophe Wilbaut, 2011. "Improved convergent heuristics for the 0-1 multidimensional knapsack problem," Annals of Operations Research, Springer, vol. 183(1), pages 125-142, March.
    8. Renata Mansini & Roberto Zanotti, 2020. "A Core-Based Exact Algorithm for the Multidimensional Multiple Choice Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 1061-1079, October.
    9. Setzer, Thomas & Blanc, Sebastian M., 2020. "Empirical orthogonal constraint generation for Multidimensional 0/1 Knapsack Problems," European Journal of Operational Research, Elsevier, vol. 282(1), pages 58-70.
    10. Wilbaut, Christophe & Salhi, Saïd & Hanafi, Saïd, 2009. "An iterative variable-based fixation heuristic for the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 199(2), pages 339-348, December.
    11. Yoon, Yourim & Kim, Yong-Hyuk & Moon, Byung-Ro, 2012. "A theoretical and empirical investigation on the Lagrangian capacities of the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 218(2), pages 366-376.
    12. Rong, Aiying & Figueira, José Rui & Lahdelma, Risto, 2015. "A two phase approach for the bi-objective non-convex combined heat and power production planning problem," European Journal of Operational Research, Elsevier, vol. 245(1), pages 296-308.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wilbaut, Christophe & Salhi, Saïd & Hanafi, Saïd, 2009. "An iterative variable-based fixation heuristic for the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 199(2), pages 339-348, December.
    2. Glover, Fred, 2013. "Advanced greedy algorithms and surrogate constraint methods for linear and quadratic knapsack and covering problems," European Journal of Operational Research, Elsevier, vol. 230(2), pages 212-225.
    3. Yuji Nakagawa & Ross J. W. James & César Rego & Chanaka Edirisinghe, 2014. "Entropy-Based Optimization of Nonlinear Separable Discrete Decision Models," Management Science, INFORMS, vol. 60(3), pages 695-707, March.
    4. Saïd Hanafi & Christophe Wilbaut, 2011. "Improved convergent heuristics for the 0-1 multidimensional knapsack problem," Annals of Operations Research, Springer, vol. 183(1), pages 125-142, March.
    5. Yoon, Yourim & Kim, Yong-Hyuk & Moon, Byung-Ro, 2012. "A theoretical and empirical investigation on the Lagrangian capacities of the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 218(2), pages 366-376.
    6. Arnaud Fréville & SaÏd Hanafi, 2005. "The Multidimensional 0-1 Knapsack Problem—Bounds and Computational Aspects," Annals of Operations Research, Springer, vol. 139(1), pages 195-227, October.
    7. Renata Mansini & M. Grazia Speranza, 2012. "CORAL: An Exact Algorithm for the Multidimensional Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 399-415, August.
    8. Xin Tang & Ameur Soukhal & Vincent T’kindt, 2014. "Preprocessing for a map sectorization problem by means of mathematical programming," Annals of Operations Research, Springer, vol. 222(1), pages 551-569, November.
    9. Jakob Puchinger & Günther R. Raidl & Ulrich Pferschy, 2010. "The Multidimensional Knapsack Problem: Structure and Algorithms," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 250-265, May.
    10. Yannick Vimont & Sylvain Boussier & Michel Vasquez, 2008. "Reduced costs propagation in an efficient implicit enumeration for the 01 multidimensional knapsack problem," Journal of Combinatorial Optimization, Springer, vol. 15(2), pages 165-178, February.
    11. Deane, Jason & Agarwal, Anurag, 2012. "Scheduling online advertisements to maximize revenue under variable display frequency," Omega, Elsevier, vol. 40(5), pages 562-570.
    12. Freville, Arnaud, 2004. "The multidimensional 0-1 knapsack problem: An overview," European Journal of Operational Research, Elsevier, vol. 155(1), pages 1-21, May.
    13. Yanhong Feng & Hongmei Wang & Zhaoquan Cai & Mingliang Li & Xi Li, 2023. "Hybrid Learning Moth Search Algorithm for Solving Multidimensional Knapsack Problems," Mathematics, MDPI, vol. 11(8), pages 1-28, April.
    14. Wu, Jigang & Srikanthan, Thambipillai & Yan, Chengbin, 2008. "Algorithmic aspects for power-efficient hardware/software partitioning," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(4), pages 1204-1215.
    15. Vincent T’kindt & Federico Della Croce & Jean-Louis Bouquard, 2007. "Enumeration of Pareto Optima for a Flowshop Scheduling Problem with Two Criteria," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 64-72, February.
    16. Gendron, Bernard & Hanafi, Saïd & Todosijević, Raca, 2018. "Matheuristics based on iterative linear programming and slope scaling for multicommodity capacitated fixed charge network design," European Journal of Operational Research, Elsevier, vol. 268(1), pages 70-81.
    17. Chen, Yuning & Hao, Jin-Kao, 2014. "A “reduce and solve” approach for the multiple-choice multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 239(2), pages 313-322.
    18. Fortin, D. & Tseveendorj, I., 2009. "A trust branching path heuristic for zero-one programming," European Journal of Operational Research, Elsevier, vol. 197(2), pages 439-445, September.
    19. Boyer, V. & Elkihel, M. & El Baz, D., 2009. "Heuristics for the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 199(3), pages 658-664, December.
    20. A Volgenant & I Y Zwiers, 2007. "Partial enumeration in heuristics for some combinatorial optimization problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(1), pages 73-79, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:195:y:2009:i:1:p:62-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.