IDEAS home Printed from https://ideas.repec.org/a/scn/cememm/v51y2015i1p97-108.html
   My bibliography  Save this article

Выбор Комплексной Стратегии Предприятия С Учетом Сочетаемости Стратегических Решений

Author

Listed:
  • Ершов Д.М.
  • Кобылко А.А.

Abstract

Предлагается новый подход к выбору комплексной стратегии предприятия, отличающийся от подходов, предложенных ранее, формирующих стратегию решений с учетом сочетаемости. Новый подход был апробирован на модельной задаче и показал свою практическую полезность.

Suggested Citation

  • Ершов Д.М. & Кобылко А.А., 2015. "Выбор Комплексной Стратегии Предприятия С Учетом Сочетаемости Стратегических Решений," Журнал Экономика и математические методы (ЭММ), Центральный Экономико-Математический Институт (ЦЭМИ), vol. 51(1), pages 97-108, январь.
  • Handle: RePEc:scn:cememm:v:51:y:2015:i:1:p:97-108
    Note: Москва
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Wilbaut, Christophe & Hanafi, Said, 2009. "New convergent heuristics for 0-1 mixed integer programming," European Journal of Operational Research, Elsevier, vol. 195(1), pages 62-74, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Renata Mansini & M. Grazia Speranza, 2012. "CORAL: An Exact Algorithm for the Multidimensional Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 399-415, August.
    2. Saïd Hanafi & Christophe Wilbaut, 2011. "Improved convergent heuristics for the 0-1 multidimensional knapsack problem," Annals of Operations Research, Springer, vol. 183(1), pages 125-142, March.
    3. Wilbaut, Christophe & Salhi, Saïd & Hanafi, Saïd, 2009. "An iterative variable-based fixation heuristic for the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 199(2), pages 339-348, December.
    4. Yoon, Yourim & Kim, Yong-Hyuk & Moon, Byung-Ro, 2012. "A theoretical and empirical investigation on the Lagrangian capacities of the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 218(2), pages 366-376.
    5. Saïd Hanafi & Raca Todosijević, 2017. "Mathematical programming based heuristics for the 0–1 MIP: a survey," Journal of Heuristics, Springer, vol. 23(4), pages 165-206, August.
    6. Renata Mansini & Roberto Zanotti, 2020. "A Core-Based Exact Algorithm for the Multidimensional Multiple Choice Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 1061-1079, October.
    7. Al-Shihabi, Sameh, 2021. "A Novel Core-Based Optimization Framework for Binary Integer Programs- the Multidemand Multidimesional Knapsack Problem as a Test Problem," Operations Research Perspectives, Elsevier, vol. 8(C).
    8. Setzer, Thomas & Blanc, Sebastian M., 2020. "Empirical orthogonal constraint generation for Multidimensional 0/1 Knapsack Problems," European Journal of Operational Research, Elsevier, vol. 282(1), pages 58-70.
    9. Rong, Aiying & Figueira, José Rui & Lahdelma, Risto, 2015. "A two phase approach for the bi-objective non-convex combined heat and power production planning problem," European Journal of Operational Research, Elsevier, vol. 245(1), pages 296-308.
    10. Gendron, Bernard & Hanafi, Saïd & Todosijević, Raca, 2018. "Matheuristics based on iterative linear programming and slope scaling for multicommodity capacitated fixed charge network design," European Journal of Operational Research, Elsevier, vol. 268(1), pages 70-81.
    11. Chen, Yuning & Hao, Jin-Kao, 2014. "A “reduce and solve” approach for the multiple-choice multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 239(2), pages 313-322.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:scn:cememm:v:51:y:2015:i:1:p:97-108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sergei Parinov (email available below). General contact details of provider: http://www.cemi.rssi.ru/emm/home.htm .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.