IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v190y2008i3p724-740.html
   My bibliography  Save this article

Heuristics for workforce planning with worker differences

Author

Listed:
  • Fowler, John W.
  • Wirojanagud, Pornsarun
  • Gel, Esma S.

Abstract

This study considers decisions in workforce management assuming individual workers are inherently different as measured by general cognitive ability (GCA). A mixed integer programming (MIP) model that determines different staffing decisions (i.e., hire, cross-train, and fire) in order to minimize workforce related costs over multiple periods is described. Solving the MIP for a large problem instance size is computationally burdensome. In this paper, two linear programming (LP) based heuristics and a solution space partition approach are presented to reduce the computational time. A genetic algorithm was also implemented as an alternative method to obtain better solutions and for comparison to the heuristics proposed. The heuristics were applied to realistic manufacturing systems with a large number of machine groups. Experimental results shows that performance of the LP based heuristics performance are surprisingly good and indicate that the heuristics can solve large problem instances effectively with reasonable computational effort.

Suggested Citation

  • Fowler, John W. & Wirojanagud, Pornsarun & Gel, Esma S., 2008. "Heuristics for workforce planning with worker differences," European Journal of Operational Research, Elsevier, vol. 190(3), pages 724-740, November.
  • Handle: RePEc:eee:ejores:v:190:y:2008:i:3:p:724-740
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00601-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. George Vairaktarakis & Janice Kim Winch, 1999. "Worker Cross-Training in Paced Assembly Lines," Manufacturing & Service Operations Management, INFORMS, vol. 1(2), pages 112-131.
    2. Stewart, B. D. & Webster, D. B. & Ahmad, S. & Matson, J. O., 1994. "Mathematical models for developing a flexible workforce," International Journal of Production Economics, Elsevier, vol. 36(3), pages 243-254, October.
    3. James G. Morris & Michael J. Showalter, 1983. "Simple Approaches to Shift, Days-Off and Tour Scheduling Problems," Management Science, INFORMS, vol. 29(8), pages 942-950, August.
    4. Willie B. Henderson & William L. Berry, 1976. "Heuristic Methods for Telephone Operator Shift Scheduling: An Experimental Analysis," Management Science, INFORMS, vol. 22(12), pages 1372-1380, August.
    5. Billionnet, Alain, 1999. "Integer programming to schedule a hierarchical workforce with variable demands," European Journal of Operational Research, Elsevier, vol. 114(1), pages 105-114, April.
    6. ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
    7. Campbell, Gerard M. & Diaby, Moustapha, 2002. "Development and evaluation of an assignment heuristic for allocating cross-trained workers," European Journal of Operational Research, Elsevier, vol. 138(1), pages 9-20, April.
    8. Gerard M. Campbell, 1999. "Cross-Utilization of Workers Whose Capabilities Differ," Management Science, INFORMS, vol. 45(5), pages 722-732, May.
    9. Vairaktarakis, George L. & Cai, Xiaoqiang & Lee, Chung-Yee, 2002. "Workforce planning in synchronous production systems," European Journal of Operational Research, Elsevier, vol. 136(3), pages 551-572, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ulmer, Marlin & Nowak, Maciek & Mattfeld, Dirk & Kaminski, Bogumił, 2020. "Binary driver-customer familiarity in service routing," European Journal of Operational Research, Elsevier, vol. 286(2), pages 477-493.
    2. Komarudin, & Guerry, Marie-Anne & De Feyter, Tim & Vanden Berghe, Greet, 2013. "The roster quality staffing problem – A methodology for improving the roster quality by modifying the personnel structure," European Journal of Operational Research, Elsevier, vol. 230(3), pages 551-562.
    3. Corominas, Albert & Lusa, Amaia & Olivella, Jordi, 2012. "A detailed workforce planning model including non-linear dependence of capacity on the size of the staff and cash management," European Journal of Operational Research, Elsevier, vol. 216(2), pages 445-458.
    4. Lin, Shih-Wei & Ying, Kuo-Ching, 2014. "Minimizing shifts for personnel task scheduling problems: A three-phase algorithm," European Journal of Operational Research, Elsevier, vol. 237(1), pages 323-334.
    5. Farahani, Poorya & Grunow, Martin & Akkerman, Renzo, 2013. "Design and operations planning of municipal foodservice systems," International Journal of Production Economics, Elsevier, vol. 144(1), pages 383-396.
    6. Valeva, Silviya & Hewitt, Mike & Thomas, Barrett W. & Brown, Kenneth G., 2017. "Balancing flexibility and inventory in workforce planning with learning," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 194-207.
    7. Battaïa, Olga & Delorme, Xavier & Dolgui, Alexandre & Hagemann, Johannes & Horlemann, Anika & Kovalev, Sergey & Malyutin, Sergey, 2015. "Workforce minimization for a mixed-model assembly line in the automotive industry," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 489-500.
    8. Hewitt, Mike & Chacosky, Austin & Grasman, Scott E. & Thomas, Barrett W., 2015. "Integer programming techniques for solving non-linear workforce planning models with learning," European Journal of Operational Research, Elsevier, vol. 242(3), pages 942-950.
    9. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    10. Akl, Amany M. & El Sawah, Sondoss & Chakrabortty, Ripon K. & Turan, Hasan Hüseyin, 2022. "A Joint Optimization of Strategic Workforce Planning and Preventive Maintenance Scheduling: A Simulation–Optimization Approach," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    11. De Bruecker, Philippe & Van den Bergh, Jorne & Beliën, Jeroen & Demeulemeester, Erik, 2015. "Workforce planning incorporating skills: State of the art," European Journal of Operational Research, Elsevier, vol. 243(1), pages 1-16.
    12. De Bruecker, Philippe & Beliën, Jeroen & Van den Bergh, Jorne & Demeulemeester, Erik, 2018. "A three-stage mixed integer programming approach for optimizing the skill mix and training schedules for aircraft maintenance," European Journal of Operational Research, Elsevier, vol. 267(2), pages 439-452.
    13. Gang Li & Joy M. Field & Hongxun Jiang & Tian He & Youming Pang, 2019. "Decision Models for Workforce and Technology Planning in Services," Papers 1909.12829, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henao, César Augusto & Ferrer, Juan Carlos & Muñoz, Juan Carlos & Vera, Jorge, 2016. "Multiskilling with closed chains in a service industry: A robust optimization approach," International Journal of Production Economics, Elsevier, vol. 179(C), pages 166-178.
    2. Maenhout, Broos & Vanhoucke, Mario, 2013. "An integrated nurse staffing and scheduling analysis for longer-term nursing staff allocation problems," Omega, Elsevier, vol. 41(2), pages 485-499.
    3. Brusco, Michael J., 2015. "A bicriterion algorithm for the allocation of cross-trained workers based on operational and human resource objectives," European Journal of Operational Research, Elsevier, vol. 247(1), pages 46-59.
    4. Batta, Rajan & Berman, Oded & Wang, Qian, 2007. "Balancing staffing and switching costs in a service center with flexible servers," European Journal of Operational Research, Elsevier, vol. 177(2), pages 924-938, March.
    5. Wright, P. Daniel & Mahar, Stephen, 2013. "Centralized nurse scheduling to simultaneously improve schedule cost and nurse satisfaction," Omega, Elsevier, vol. 41(6), pages 1042-1052.
    6. G M Campbell, 2011. "A two-stage stochastic program for scheduling and allocating cross-trained workers," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(6), pages 1038-1047, June.
    7. Delorme, Xavier & Dolgui, Alexandre & Kovalev, Sergey & Kovalyov, Mikhail Y., 2019. "Minimizing the number of workers in a paced mixed-model assembly line," European Journal of Operational Research, Elsevier, vol. 272(1), pages 188-194.
    8. Brusco, Michael J. & Jacobs, Larry W., 1995. "Cost analysis of alternative formulations for personnel scheduling in continuously operating organizations," European Journal of Operational Research, Elsevier, vol. 86(2), pages 249-261, October.
    9. Gnanlet, Adelina & Gilland, Wendell G., 2014. "Impact of productivity on cross-training configurations and optimal staffing decisions in hospitals," European Journal of Operational Research, Elsevier, vol. 238(1), pages 254-269.
    10. Schoenfelder, Jan & Bretthauer, Kurt M. & Wright, P. Daniel & Coe, Edwin, 2020. "Nurse scheduling with quick-response methods: Improving hospital performance, nurse workload, and patient experience," European Journal of Operational Research, Elsevier, vol. 283(1), pages 390-403.
    11. Alexander Biele & Lars Mönch, 2018. "Hybrid approaches to optimize mixed-model assembly lines in low-volume manufacturing," Journal of Heuristics, Springer, vol. 24(1), pages 49-81, February.
    12. Sayin, Serpil & Karabati, Selcuk, 2007. "Assigning cross-trained workers to departments: A two-stage optimization model to maximize utility and skill improvement," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1643-1658, February.
    13. Brusco, Michael J. & Johns, Tony R., 1996. "A sequential integer programming method for discontinuous labor tour scheduling," European Journal of Operational Research, Elsevier, vol. 95(3), pages 537-548, December.
    14. Gary M. Thompson, 1997. "Labor staffing and scheduling models for controlling service levels," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(8), pages 719-740, December.
    15. Jonathan F. Bard & Lin Wan, 2008. "Workforce Design with Movement Restrictions Between Workstation Groups," Manufacturing & Service Operations Management, INFORMS, vol. 10(1), pages 24-42, November.
    16. Emilio Zamorano & Annika Becker & Raik Stolletz, 2018. "Task assignment with start time-dependent processing times for personnel at check-in counters," Journal of Scheduling, Springer, vol. 21(1), pages 93-109, February.
    17. Thompson, Gary M. & Pullman, Madeleine E., 2007. "Scheduling workforce relief breaks in advance versus in real-time," European Journal of Operational Research, Elsevier, vol. 181(1), pages 139-155, August.
    18. Stephen E. Bechtold & Larry W. Jacobs, 1996. "The equivalence of general set‐covering and implicit integer programming formulations for shift scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(2), pages 233-249, March.
    19. Dolgui, Alexandre & Kovalev, Sergey & Kovalyov, Mikhail Y. & Malyutin, Sergey & Soukhal, Ameur, 2018. "Optimal workforce assignment to operations of a paced assembly line," European Journal of Operational Research, Elsevier, vol. 264(1), pages 200-211.
    20. L Wan & J F Bard, 2007. "Weekly staff scheduling with workstation group restrictions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(8), pages 1030-1046, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:190:y:2008:i:3:p:724-740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.