IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2005-1-3.html
   My bibliography  Save this article

Enhancing the Supply Chain Performance by Integrating Simulated and Physical Agents into Organizational Information Systems

Author

Listed:

Abstract

As the business environment gets more complicated, organizations must be able to respond to the business changes and adjust themselves quickly to gain their competitive advantages. This study proposes an integrated agent system, called SPA, which coordinates simulated and physical agents to provide an efficient way for organizations to meet the challenges in managing supply chains. In the integrated framework, physical agents coordinate with inter-organizations' physical agents to form workable business processes and detect the variations occurring in the outside world, whereas simulated agents model and analyze the what-if scenarios to support physical agents in making decisions. This study uses a supply chain that produces digital still cameras as an example to demonstrate how the SPA works. In this example, individual information systems of the involved companies equip with the SPA and the entire supply chain is modeled as a hierarchical object oriented Petri nets. The SPA here applies the modified AGNES data clustering technique and the moving average approach to help each firm generalize customers' past demand patterns and forecast their future demands. The amplitude of forecasting errors caused by bullwhip effects is used as a metric to evaluate the degree that the SPA affects the supply chain performance. The experimental results show that the SPA benefits the entire supply chain by reducing the bullwhip effects and forecasting errors in a dynamic environment.

Suggested Citation

  • Fu-ren Lin & Shyh-ming Lin, 2006. "Enhancing the Supply Chain Performance by Integrating Simulated and Physical Agents into Organizational Information Systems," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 9(4), pages 1-1.
  • Handle: RePEc:jas:jasssj:2005-1-3
    as

    Download full text from publisher

    File URL: https://www.jasss.org/9/4/1/1.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nelson Minar & Rogert Burkhart & Chris Langton & Manor Askenazi, 1996. "The Swarm Simulation System: A Toolkit for Building Multi-Agent Simulations," Working Papers 96-06-042, Santa Fe Institute.
    2. Hau L. Lee & V. Padmanabhan & Seungjin Whang, 1997. "Information Distortion in a Supply Chain: The Bullwhip Effect," Management Science, INFORMS, vol. 43(4), pages 546-558, April.
    3. Hosoda, Takamichi & Disney, Stephen M., 2006. "On variance amplification in a three-echelon supply chain with minimum mean square error forecasting," Omega, Elsevier, vol. 34(4), pages 344-358, August.
    4. Dejonckheere, J. & Disney, S. M. & Lambrecht, M. R. & Towill, D. R., 2004. "The impact of information enrichment on the Bullwhip effect in supply chains: A control engineering perspective," European Journal of Operational Research, Elsevier, vol. 153(3), pages 727-750, March.
    5. Chandra, Charu & Grabis, Janis, 2005. "Application of multi-steps forecasting for restraining the bullwhip effect and improving inventory performance under autoregressive demand," European Journal of Operational Research, Elsevier, vol. 166(2), pages 337-350, October.
    6. Nils B. Weidmann & Luc Girardin, 2005. "Technical Note: Evaluating Java Development Kits for Agent-Based Modeling," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 8(2), pages 1-8.
    7. Kaihara, Toshiya, 2003. "Multi-agent based supply chain modelling with dynamic environment," International Journal of Production Economics, Elsevier, vol. 85(2), pages 263-269, August.
    8. Paul Davidsson, 2002. "Agent Based Social Simulation: a Computer Science View," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(1), pages 1-7.
    9. Thonemann, U. W., 2002. "Improving supply-chain performance by sharing advance demand information," European Journal of Operational Research, Elsevier, vol. 142(1), pages 81-107, October.
    10. Pietro Terna, 1998. "Simulation Tools for Social Scientists: Building Agent Based Models with SWARM," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 1(2), pages 1-4.
    11. Troy J Strader & Fu-ren Lin & Michael J Shaw, 1998. "Simulation of Order Fulfillment in Divergent Assembly Supply Chains," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 1(2), pages 1-5.
    12. Frank Chen & Zvi Drezner & Jennifer K. Ryan & David Simchi-Levi, 2000. "Quantifying the Bullwhip Effect in a Simple Supply Chain: The Impact of Forecasting, Lead Times, and Information," Management Science, INFORMS, vol. 46(3), pages 436-443, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ciancimino, Elena & Cannella, Salvatore & Bruccoleri, Manfredi & Framinan, Jose M., 2012. "On the Bullwhip Avoidance Phase: The Synchronised Supply Chain," European Journal of Operational Research, Elsevier, vol. 221(1), pages 49-63.
    2. K. Devika & A. Jafarian & A. Hassanzadeh & R. Khodaverdi, 2016. "Optimizing of bullwhip effect and net stock amplification in three-echelon supply chains using evolutionary multi-objective metaheuristics," Annals of Operations Research, Springer, vol. 242(2), pages 457-487, July.
    3. Kristianto, Yohanes & Helo, Petri & Jiao, Jianxin (Roger) & Sandhu, Maqsood, 2012. "Adaptive fuzzy vendor managed inventory control for mitigating the Bullwhip effect in supply chains," European Journal of Operational Research, Elsevier, vol. 216(2), pages 346-355.
    4. Chatfield, Dean C. & Pritchard, Alan M., 2013. "Returns and the bullwhip effect," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 159-175.
    5. Sodhi, ManMohan S. & Tang, Christopher S., 2011. "The incremental bullwhip effect of operational deviations in an arborescent supply chain with requirements planning," European Journal of Operational Research, Elsevier, vol. 215(2), pages 374-382, December.
    6. Rupesh Kumar Pati, 2014. "Modelling Bullwhip Effect in a Closed Loop Supply Chain with ARMA Demand," IIM Kozhikode Society & Management Review, , vol. 3(2), pages 149-164, July.
    7. Ahmed Shaban & Mohamed A. Shalaby & Giulio Di Gravio & Riccardo Patriarca, 2020. "Analysis of Variance Amplification and Service Level in a Supply Chain with Correlated Demand," Sustainability, MDPI, vol. 12(16), pages 1-27, August.
    8. Wang, Xun & Disney, Stephen M., 2016. "The bullwhip effect: Progress, trends and directions," European Journal of Operational Research, Elsevier, vol. 250(3), pages 691-701.
    9. Kim, Ilhyung & Springer, Mark, 2008. "Measuring endogenous supply chain volatility: Beyond the bullwhip effect," European Journal of Operational Research, Elsevier, vol. 189(1), pages 172-193, August.
    10. Dominguez, Roberto & Cannella, Salvatore & Barbosa-Póvoa, Ana P. & Framinan, Jose M., 2018. "OVAP: A strategy to implement partial information sharing among supply chain retailers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 122-136.
    11. Ojha, Divesh & Sahin, Funda & Shockley, Jeff & Sridharan, Sri V., 2019. "Is there a performance tradeoff in managing order fulfillment and the bullwhip effect in supply chains? The role of information sharing and information type," International Journal of Production Economics, Elsevier, vol. 208(C), pages 529-543.
    12. Warburton, Roger D.H. & Hodgson, J.P.E. & Nielsen, E.H., 2014. "Exact solutions to the supply chain equations for arbitrary, time-dependent demands," International Journal of Production Economics, Elsevier, vol. 151(C), pages 195-205.
    13. Babai, M.Z. & Boylan, J.E. & Syntetos, A.A. & Ali, M.M., 2016. "Reduction of the value of information sharing as demand becomes strongly auto-correlated," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 130-135.
    14. Su, Yiqiang & Geunes, Joseph, 2012. "Price promotions, operations cost, and profit in a two-stage supply chain," Omega, Elsevier, vol. 40(6), pages 891-905.
    15. A A Syntetos & J E Boylan & S M Disney, 2009. "Forecasting for inventory planning: a 50-year review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 149-160, May.
    16. M M Ali & J E Boylan, 2011. "Feasibility principles for Downstream Demand Inference in supply chains," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 474-482, March.
    17. de Lima, Daruichi Pereira & Fioriolli, José Carlos & Padula, Antonio Domingos & Pumi, Guilherme, 2018. "The impact of Chinese imports of soybean on port infrastructure in Brazil: A study based on the concept of the “Bullwhip Effect”," Journal of Commodity Markets, Elsevier, vol. 9(C), pages 55-76.
    18. Disney, S.M. & Farasyn, I. & Lambrecht, M. & Towill, D.R. & de Velde, W. Van, 2006. "Taming the bullwhip effect whilst watching customer service in a single supply chain echelon," European Journal of Operational Research, Elsevier, vol. 173(1), pages 151-172, August.
    19. Dominguez, Roberto & Cannella, Salvatore & Barbosa-Póvoa, Ana P. & Framinan, Jose M., 2018. "Information sharing in supply chains with heterogeneous retailers," Omega, Elsevier, vol. 79(C), pages 116-132.
    20. Dominguez, Roberto & Cannella, Salvatore & Framinan, Jose M., 2021. "Remanufacturing configuration in complex supply chains," Omega, Elsevier, vol. 101(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2005-1-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.