IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb475/200304.html
   My bibliography  Save this paper

Support vector machines and learning about time

Author

Listed:
  • Rüping, Stefan
  • Morik, Katharina

Abstract

The analysis of temporal data is an important issue of current research, because most real-world data either explicitly or implicitly contains some information about time. The key to successfully solving temporal learning tasks is to analyze the assumptions that can be made and prior knowledge one has about the temporal process of the learning problem and find a representation of the data and a learning algorithm that makes effective use of this knowledge. This paper will present a concise overview of the application Support Vector Machines to different temporal learning tasks and the corresponding temporal representations.

Suggested Citation

  • Rüping, Stefan & Morik, Katharina, 2003. "Support vector machines and learning about time," Technical Reports 2003,04, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  • Handle: RePEc:zbw:sfb475:200304
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/49345/1/369859901.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carbonneau, Real & Laframboise, Kevin & Vahidov, Rustam, 2008. "Application of machine learning techniques for supply chain demand forecasting," European Journal of Operational Research, Elsevier, vol. 184(3), pages 1140-1154, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb475:200304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/isdorde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.