IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v157y2004i2p322-331.html
   My bibliography  Save this article

Solving the k-cardinality assignment problem by transformation

Author

Listed:
  • Volgenant, A.

Abstract

No abstract is available for this item.

Suggested Citation

  • Volgenant, A., 2004. "Solving the k-cardinality assignment problem by transformation," European Journal of Operational Research, Elsevier, vol. 157(2), pages 322-331, September.
  • Handle: RePEc:eee:ejores:v:157:y:2004:i:2:p:322-331
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(03)00205-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moshe Dror & Mohamed Haouari, 2000. "Generalized Steiner Problems and Other Variants," Journal of Combinatorial Optimization, Springer, vol. 4(4), pages 415-436, December.
    2. Gaétan Caron & Pierri Hansen & Brigitte Jaumard, 1999. "The Assignment Problem with Seniority and Job Priority Constraints," Operations Research, INFORMS, vol. 47(3), pages 449-453, June.
    3. J. Kennington & Z. Wang, 1992. "A Shortest Augmenting Path Algorithm for the Semi-Assignment Problem," Operations Research, INFORMS, vol. 40(1), pages 178-187, February.
    4. Jonker, R. & Volgenant, A., 1999. "Linear assignment procedures," European Journal of Operational Research, Elsevier, vol. 116(1), pages 233-234, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amnon Rosenmann, 2022. "Computing the sequence of k-cardinality assignments," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1265-1283, September.
    2. J. Bijsterbosch & A. Volgenant, 2010. "Solving the Rectangular assignment problem and applications," Annals of Operations Research, Springer, vol. 181(1), pages 443-462, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pentico, David W., 2007. "Assignment problems: A golden anniversary survey," European Journal of Operational Research, Elsevier, vol. 176(2), pages 774-793, January.
    2. Volgenant, A., 2004. "A note on the assignment problem with seniority and job priority constraints," European Journal of Operational Research, Elsevier, vol. 154(1), pages 330-335, April.
    3. Feremans, Corinne & Labbe, Martine & Laporte, Gilbert, 2003. "Generalized network design problems," European Journal of Operational Research, Elsevier, vol. 148(1), pages 1-13, July.
    4. Mehran Hojati, 2010. "Near-optimal solution to an employee assignment problem with seniority," Annals of Operations Research, Springer, vol. 181(1), pages 539-557, December.
    5. Pop, Petrică C., 2020. "The generalized minimum spanning tree problem: An overview of formulations, solution procedures and latest advances," European Journal of Operational Research, Elsevier, vol. 283(1), pages 1-15.
    6. Andreas Dellnitz & Damian Pozo & Jochen Bauer & Andreas Kleine, 2023. "Practice Summary: Seminar Assignments in a University—MATLAB-Based Decision Support," Interfaces, INFORMS, vol. 53(4), pages 307-311, July.
    7. Pop, Petrică C. & Cosma, Ovidiu & Sabo, Cosmin & Sitar, Corina Pop, 2024. "A comprehensive survey on the generalized traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 314(3), pages 819-835.
    8. Jonker, R. & Volgenant, A., 1999. "Linear assignment procedures," European Journal of Operational Research, Elsevier, vol. 116(1), pages 233-234, July.
    9. Masoumeh Zojaji & Mohammad Reza Mollakhalili Meybodi & Kamal Mirzaie, 0. "A rapid learning automata-based approach for generalized minimum spanning tree problem," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-24.
    10. Mehdi El Krari & Belaïd Ahiod & Youssef Bouazza El Benani, 2021. "A pre-processing reduction method for the generalized travelling salesman problem," Operational Research, Springer, vol. 21(4), pages 2543-2591, December.
    11. Manion Anderson & Merve Bodur & Scott Rathwell & Vahid Sarhangian, 2023. "Optimization Helps Scheduling Nursing Staff at the Long-Term Care Homes of the City of Toronto," Interfaces, INFORMS, vol. 53(2), pages 133-154, March.
    12. Ioannis T. Christou & Armand Zakarian & Jun-Min Liu & Helen Carter, 1999. "A Two-Phase Genetic Algorithm for Large-Scale Bidline-Generation Problems at Delta Air Lines," Interfaces, INFORMS, vol. 29(5), pages 51-65, October.
    13. W Zahrouni & H Kamoun, 2011. "Transforming part-sequencing problems in a robotic cell into a GTSP," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 114-123, January.
    14. Masoumeh Zojaji & Mohammad Reza Mollakhalili Meybodi & Kamal Mirzaie, 2020. "A rapid learning automata-based approach for generalized minimum spanning tree problem," Journal of Combinatorial Optimization, Springer, vol. 40(3), pages 636-659, October.
    15. Yuli Zhang & Zuo-Jun Max Shen & Shiji Song, 2018. "Exact Algorithms for Distributionally β -Robust Machine Scheduling with Uncertain Processing Times," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 662-676, November.
    16. Pop, Petrica C. & Kern, W. & Still, G., 2006. "A new relaxation method for the generalized minimum spanning tree problem," European Journal of Operational Research, Elsevier, vol. 170(3), pages 900-908, May.
    17. Andreas Kleine & Andreas Dellnitz, 2017. "Allocation of seminar applicants," Journal of Business Economics, Springer, vol. 87(7), pages 927-941, October.
    18. Volgenant, A., 2002. "Solving some lexicographic multi-objective combinatorial problems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 578-584, June.
    19. Snyder, Lawrence V. & Daskin, Mark S., 2006. "A random-key genetic algorithm for the generalized traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 174(1), pages 38-53, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:157:y:2004:i:2:p:322-331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.