IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v283y2020i1p1-15.html
   My bibliography  Save this article

The generalized minimum spanning tree problem: An overview of formulations, solution procedures and latest advances

Author

Listed:
  • Pop, Petrică C.

Abstract

In this paper, some of the main known results relative to the generalized minimum spanning tree problem are surveyed. The principal feature of this problem is related to the fact that the vertices of the graph are partitioned into a certain number of clusters and we are interested in finding a minimum-cost tree spanning a subset of vertices with precisely one vertex considered from every cluster. The paper is structured around the following main headings: problem definition, variations and practical applications, complexity aspects, integer programming formulations, exact and heuristic solution approaches developed for solving this problem. Furthermore, we also discuss some open problems and possible research directions.

Suggested Citation

  • Pop, Petrică C., 2020. "The generalized minimum spanning tree problem: An overview of formulations, solution procedures and latest advances," European Journal of Operational Research, Elsevier, vol. 283(1), pages 1-15.
  • Handle: RePEc:eee:ejores:v:283:y:2020:i:1:p:1-15
    DOI: 10.1016/j.ejor.2019.05.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719304217
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.05.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feremans, Corinne & Labbe, Martine & Laporte, Gilbert, 2001. "On generalized minimum spanning trees," European Journal of Operational Research, Elsevier, vol. 134(2), pages 457-458, October.
    2. Ioannis Gamvros & Bruce Golden & S. Raghavan & Daliborka Stanojević, 2005. "Heuristic Search for Network Design," International Series in Operations Research & Management Science, in: H J. G (ed.), Tutorials on Emerging Methodologies and Applications in Operations Research, chapter 0, pages 1-1-1-46, Springer.
    3. Moshe Dror & Mohamed Haouari, 2000. "Generalized Steiner Problems and Other Variants," Journal of Combinatorial Optimization, Springer, vol. 4(4), pages 415-436, December.
    4. Ghiani, Gianpaolo & Improta, Gennaro, 2000. "An efficient transformation of the generalized vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 122(1), pages 11-17, April.
    5. Pop, Petrica C. & Kern, W. & Still, G., 2006. "A new relaxation method for the generalized minimum spanning tree problem," European Journal of Operational Research, Elsevier, vol. 170(3), pages 900-908, May.
    6. P. Pop, 2007. "On the prize-collecting generalized minimum spanning tree problem," Annals of Operations Research, Springer, vol. 150(1), pages 193-204, March.
    7. Miranda, Pablo A. & Blazquez, Carola A. & Obreque, Carlos & Maturana-Ross, Javier & Gutierrez-Jarpa, Gabriel, 2018. "The bi-objective insular traveling salesman problem with maritime and ground transportation costs," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1014-1036.
    8. Yagiura, Mutsunori & Ibaraki, Toshihide & Glover, Fred, 2006. "A path relinking approach with ejection chains for the generalized assignment problem," European Journal of Operational Research, Elsevier, vol. 169(2), pages 548-569, March.
    9. M Haouari & J Chaouachi & M Dror, 2005. "Solving the generalized minimum spanning tree problem by a branch-and-bound algorithm," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(4), pages 382-389, April.
    10. Bruce Golden & S. Raghavan & Daliborka Stanojević, 2005. "Heuristic Search for the Generalized Minimum Spanning Tree Problem," INFORMS Journal on Computing, INFORMS, vol. 17(3), pages 290-304, August.
    11. Hintsch, Timo & Irnich, Stefan, 2018. "Large multiple neighborhood search for the clustered vehicle-routing problem," European Journal of Operational Research, Elsevier, vol. 270(1), pages 118-131.
    12. Demange, Marc & Ekim, Tınaz & Ries, Bernard & Tanasescu, Cerasela, 2015. "On some applications of the selective graph coloring problem," European Journal of Operational Research, Elsevier, vol. 240(2), pages 307-314.
    13. Dror, M. & Haouari, M. & Chaouachi, J., 2000. "Generalized spanning trees," European Journal of Operational Research, Elsevier, vol. 120(3), pages 583-592, February.
    14. Haouari, Mohamed & Chaouachi, Jouhaina Siala, 2006. "Upper and lower bounding strategies for the generalized minimum spanning tree problem," European Journal of Operational Research, Elsevier, vol. 171(2), pages 632-647, June.
    15. Matteo Fischetti & Juan José Salazar González & Paolo Toth, 1997. "A Branch-and-Cut Algorithm for the Symmetric Generalized Traveling Salesman Problem," Operations Research, INFORMS, vol. 45(3), pages 378-394, June.
    16. Pop, Petrică C. & Matei, Oliviu & Sabo, Cosmin & Petrovan, Adrian, 2018. "A two-level solution approach for solving the generalized minimum spanning tree problem," European Journal of Operational Research, Elsevier, vol. 265(2), pages 478-487.
    17. Duin, C. W. & Volgenant, A. & Vo[ss], S., 2004. "Solving group Steiner problems as Steiner problems," European Journal of Operational Research, Elsevier, vol. 154(1), pages 323-329, April.
    18. Stutzle, Thomas, 2006. "Iterated local search for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1519-1539, November.
    19. Öncan, Temel & Cordeau, Jean-François & Laporte, Gilbert, 2008. "A tabu search heuristic for the generalized minimum spanning tree problem," European Journal of Operational Research, Elsevier, vol. 191(2), pages 306-319, December.
    20. Kansal, Anuraag R & Torquato, Salvatore, 2001. "Globally and locally minimal weight spanning tree networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 301(1), pages 601-619.
    21. Feremans, Corinne & Labbe, Martine & Laporte, Gilbert, 2003. "Generalized network design problems," European Journal of Operational Research, Elsevier, vol. 148(1), pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José-Manuel Giménez-Gómez & Josep E Peris & Begoña Subiza, 2020. "An egalitarian approach for sharing the cost of a spanning tree," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-14, July.
    2. Jann Michael Weinand & Kenneth Sorensen & Pablo San Segundo & Max Kleinebrahm & Russell McKenna, 2020. "Research trends in combinatorial optimisation," Papers 2012.01294, arXiv.org.
    3. Pop, Petrică C. & Cosma, Ovidiu & Sabo, Cosmin & Sitar, Corina Pop, 2024. "A comprehensive survey on the generalized traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 314(3), pages 819-835.
    4. Gerson N. Cardoso & Geraldo E. Silva, 2024. "Electoral influences on the Brazilian B3 data correlation network," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(1), pages 251-272, January.
    5. Yuriy Shablya & Dmitry Kruchinin & Vladimir Kruchinin, 2020. "Method for Developing Combinatorial Generation Algorithms Based on AND/OR Trees and Its Application," Mathematics, MDPI, vol. 8(6), pages 1-21, June.
    6. Cosmin Sabo & Petrică C. Pop & Andrei Horvat-Marc, 2020. "On the Selective Vehicle Routing Problem," Mathematics, MDPI, vol. 8(5), pages 1-11, May.
    7. Ana Klobučar & Robert Manger, 2020. "Solving Robust Variants of the Maximum Weighted Independent Set Problem on Trees," Mathematics, MDPI, vol. 8(2), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Öncan, Temel & Cordeau, Jean-François & Laporte, Gilbert, 2008. "A tabu search heuristic for the generalized minimum spanning tree problem," European Journal of Operational Research, Elsevier, vol. 191(2), pages 306-319, December.
    2. Pop, Petrică C. & Matei, Oliviu & Sabo, Cosmin & Petrovan, Adrian, 2018. "A two-level solution approach for solving the generalized minimum spanning tree problem," European Journal of Operational Research, Elsevier, vol. 265(2), pages 478-487.
    3. F. Carrabs & R. Cerulli & R. Pentangelo & A. Raiconi, 2018. "A two-level metaheuristic for the all colors shortest path problem," Computational Optimization and Applications, Springer, vol. 71(2), pages 525-551, November.
    4. Pop, Petrică C. & Cosma, Ovidiu & Sabo, Cosmin & Sitar, Corina Pop, 2024. "A comprehensive survey on the generalized traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 314(3), pages 819-835.
    5. Markus Leitner, 2016. "Integer programming models and branch-and-cut approaches to generalized {0,1,2}-survivable network design problems," Computational Optimization and Applications, Springer, vol. 65(1), pages 73-92, September.
    6. Masoumeh Zojaji & Mohammad Reza Mollakhalili Meybodi & Kamal Mirzaie, 0. "A rapid learning automata-based approach for generalized minimum spanning tree problem," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-24.
    7. Masoumeh Zojaji & Mohammad Reza Mollakhalili Meybodi & Kamal Mirzaie, 2020. "A rapid learning automata-based approach for generalized minimum spanning tree problem," Journal of Combinatorial Optimization, Springer, vol. 40(3), pages 636-659, October.
    8. Mehmet Berkehan Akçay & Hüseyin Akcan & Cem Evrendilek, 2018. "All Colors Shortest Path problem on trees," Journal of Heuristics, Springer, vol. 24(4), pages 617-644, August.
    9. Haouari, Mohamed & Chaouachi, Jouhaina Siala, 2006. "Upper and lower bounding strategies for the generalized minimum spanning tree problem," European Journal of Operational Research, Elsevier, vol. 171(2), pages 632-647, June.
    10. Feremans, Corinne & Labbe, Martine & Laporte, Gilbert, 2003. "Generalized network design problems," European Journal of Operational Research, Elsevier, vol. 148(1), pages 1-13, July.
    11. Cosmin Sabo & Petrică C. Pop & Andrei Horvat-Marc, 2020. "On the Selective Vehicle Routing Problem," Mathematics, MDPI, vol. 8(5), pages 1-11, May.
    12. M Haouari & J Chaouachi & M Dror, 2005. "Solving the generalized minimum spanning tree problem by a branch-and-bound algorithm," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(4), pages 382-389, April.
    13. Ghosh, Diptesh, 2003. "A Probabilistic Tabu Search Algorithm for the Generalized Minimum Spanning Tree Problem," IIMA Working Papers WP2003-07-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    14. Pop, Petrica C. & Kern, W. & Still, G., 2006. "A new relaxation method for the generalized minimum spanning tree problem," European Journal of Operational Research, Elsevier, vol. 170(3), pages 900-908, May.
    15. Ghosh, Diptesh, 2003. "Solving Medium to Large Sized Euclidean Generalized Minimum Spanning Tree Problems," IIMA Working Papers WP2003-08-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    16. Timo Hintsch, 2019. "Large Multiple Neighborhood Search for the Soft-Clustered Vehicle-Routing Problem," Working Papers 1904, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    17. Phuoc Hoang Le & Tri-Dung Nguyen & Tolga Bektaş, 2016. "Generalized minimum spanning tree games," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(2), pages 167-188, May.
    18. Mehdi El Krari & Belaïd Ahiod & Youssef Bouazza El Benani, 2021. "A pre-processing reduction method for the generalized travelling salesman problem," Operational Research, Springer, vol. 21(4), pages 2543-2591, December.
    19. Karapetyan, D. & Gutin, G., 2011. "Lin-Kernighan heuristic adaptations for the generalized traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 208(3), pages 221-232, February.
    20. Rui Xu & Yumiao Huang & Wei Xiao, 2023. "A Two-Level Variable Neighborhood Descent for a Split Delivery Clustered Vehicle Routing Problem with Soft Cluster Conflicts and Customer-Related Costs," Sustainability, MDPI, vol. 15(9), pages 1-22, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:283:y:2020:i:1:p:1-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.